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Abstract. The task of interpretation of activities as captured in video extends beyond

just the recognition of observed actions and objects. It involves open world reasoning and

constructing deep semantic connections that go beyond what is directly observed in the

video and annotated in the training data. Prior knowledge plays a big role. Grenander’s

canonical pattern theory representation offers an elegant mechanism to capture these

semantic connections between what is observed directly in the image and past knowl-

edge in large-scale common sense knowledge bases, such as ConceptNet. We represent

interpretations using a connected structure of basic detected (grounded) concepts, such

as objects and actions, that are bound by semantics with other background concepts

not directly observed, i.e., contextualization cues. Concepts are basic generators and

the bonds are defined by the semantic relationships between concepts. Local and global

regularity constraints govern these bonds and the overall connection structure. We use

an inference engine based on energy minimization using an efficient Markov Chain Monte

Carlo that uses the ConceptNet in its move proposals to find these structures that de-

scribe the image content. Using four different publicly available large datasets, Charades,

Microsoft Visual Description Corpus (MSVD), Breakfast Actions, and CMU Kitchen, we

Received March 22, 2018, and, in revised form, October 12, 2018.
2010 Mathematics Subject Classification. Primary 54C40, 14E20; Secondary 46E25, 20C20.
Key words and phrases. Pattern theory, activity interpretation, video semantics, open world.
This research was supported in part by NSF grants IIS 1217676 and CNS-1513126.
Email address: saakur@mail.usf.edu
Email address: fillipe@mail.usf.edu
Email address: sarkar@usf.edu

c©2019 Brown University

323

https://www.ams.org/qam/
https://doi.org/10.1090/qam/1530


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

324 S. N. AAKUR, F. DM DE SOUZA, AND S. SARKAR

show that the proposed model can generate video interpretations whose quality is com-

parable or better than those reported by state-of-the-art approaches, such as different

forms of deep learning models, graphical models, and context-free grammars. Apart from

the increased performance, the use of encoded common sense knowledge sources alleviate

the need for large annotated training datasets and help tackle any imbalance in the data

through prior knowledge, which is the bane of current machine learning approaches.

1. Introduction. There have been many successful applications of pattern theory

in computer vision and artificial intelligence, for instance in shape analysis [7,23], target

tracking [40, 57], computational anatomy [25, 41], biological growth [26], context-free

grammar [24], image models [43], and even modeling of human thought [29].

Pattern theory takes an analysis by the synthesis approach [43]. To recognize a pat-

tern, we have to be able to generate it. In the canonical representation of pattern

theory (see Chapter 6 of [30]), complex patterns are described as compositions of simpler

patterns starting from elements of structured sets (generators) that bind to each other

(via bonds) through local interactions, constrained by local regularity, and also by global

structure regularity, captured by an overarching graph structure. A probability structure

over the representations captures the diversity of patterns.

The many incarnations of graphical models of patterns, such as directed acyclic graphs

(DAG), Markov random fields (MRF), Gaussian random fields, and formal languages, can

be shown to be special cases (see Chapter 6 of [30]). The use of pattern theoretic concepts

as graphical probabilistic models for computer vision can be found in [8,9,11,21,32,66].

However, the use of the canonical representations of the pattern theory in computer

vision is rare, more so for high-level vision problems of recognition and interpretation.

In our prior work, we have demonstrated that the canonical form allows for flexible

interpretations that can help overcome reasoning under the presence of background object

clutter, multiple objects and action, missing items, and long action sequences [1, 17, 18,

20]. Here we show how prior common sense knowledge, encoded in publicly available

datasets such as ConceptNet, can be incorporated in a pattern theory framework to

constrain the interpretations and also go beyond just the observed actions and objects.

We assume that we have algorithms, such as recent deep learning methods, that

generate candidate object and action labels in a video snippet capturing an activity.

Multiple candidates per instance are assumed to exist. These candidates, or feature

generators in the canonical representation, connect to grounded concepts generators in

the graph. Priors from the ConceptNet constrain the connections about these generators

and other context generators. The inference is posed as an energy minimization process

solved by MCMC. The resulting graph representations could be then used for multiple

tasks: narrative text generation (captioning), query-answering, semantics indexing, etc.

Representation of activities should have three essential characteristics. First, it has

to be compositional so as to have a large descriptive capacity through the combinatorial

combination of basic units. Second, it should not have a fixed structure like a Bayesian

Network or HMM or MRF, rather it should be flexible to allow for different types of

structures involving a different number of constituent entities, such as “whisk eggs with

a fork in the bowl”, “crack eggs”. Third, the representation should be an intermediate
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representation that supports the construction of different output types such as captions,

sentence-based descriptions, or complex Q&A interactions that go beyond simple yes-no

questions.

In a closed world, every possible world contains the same objects and events, which

are in one-to-one correspondence with the ground evidence in the image. This is the case

for much of the current work in activity recognition, especially ones based on machine

learning; the learned knowledge is limited to the annotated training set. There is some

generalization possible through transfer learning methods, but it is mostly to adjust to

new domain statistics; the object and action set remains the same. In an open world,

there is no a priori one-to-one correspondence between the objects and the grounding

terms. Some of the detected ground evidence in the image might not even be relevant to

the action under consideration and hence needs to be rejected. Also, for each identified

evidence in video, one might have many possible object and action labels. We leverage

existing sources of knowledge such as ConceptNet [39] and use common sense reasoning

to move beyond the constraints of annotations in the training data. A priori knowledge

sources also help regularize noise in putative object and action labels.

Fig. 1. Overall architecture of generating the canonical pattern the-
ory representations. Deep learning or machine learning-based ap-
proaches hypothesize multiple object and action labels each object
or action instance. Pattern theory formalism, resolves among these
hypotheses and integrates information from ConceptNet to arrive at
an interpretive representation, a connected structure expressed us-
ing Grenander’s canonical representations in terms of generators and
bonds. Note that only the modules in blue require explicit training.
We do not have to train for compositions of objects and actions.

Figure 1 depicts the computational model with these characteristics, centered around

canonical pattern theory. The starting point of our representation is elementary concepts,

such as objects (nouns) and actions (verbs), found in the video, for which we will rely

on existing approaches in the literature. We will not assume, however, that the labels

produced by these algorithms are perfect. We allow for multiple putative labels for
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each image evidence. We will integrate these words into richer descriptions of events

using Grenander’s pattern theory that impose both local and global regularity over the

elementary concepts. Probabilistic structures will be imposed on these structures, which

will then be optimized to arrive at inferences of most likely (or best-k) event structures.

Grenander’s pattern theory [27,28] offers an elegant flexible, compositional framework

to represent events as a multi-graph semantic network. The network is a configuration of

primary entities, termed generators (or nodes), connected using bonds (or edges) under

pre-defined rules. The linked compositions of objects (nouns) and simple actions (verbs),

such as “whisk eggs with fork in bowl”, will implicitly capture the language aspects of

events. The optimality of a configuration will be defined using a global posterior en-

ergy that has contributions from both data likelihood and prior knowledge. We have

explored this formalism in the past for constructing activity interpretation in audio and

video [18–20], and have found it superior to other fixed structured graphical representa-

tions such as MRF, CRF, Bayesian Networks, or HMMs in its representational capacity.

In this work, we focus on the use of common sense knowledge bases such as Concept-

Net [39, 55] as the source of prior knowledge, instead of using handcrafted ontology, as

we have done in the past.

We consider the built connected interpretation as an intermediate representation that

forms the basis for generation of more well-formed expressions, such as sentences, or can

be the basis for question and answers systems. These interpretations are similar to scene

graphs that are descriptive of static scenes in images [3, 34, 64]. However, our video in-

terpretations offer a much deeper understanding of the activity than labels or categories

and also help in constructing descriptive sentences, answering questions, and retriev-

ing similar videos. Some concepts in the interpretative structure have direct evidence

from video, i.e., grounded concepts, and some are inferred concepts that bind grounded

concepts, i.e., contextualization cues, not directly observed. In [2] we have shown how

these descriptions can be used to generate explanations and participate in a question and

answer session.

2. Common sense semantic knowledge source: ConceptNet. Before we pre-

sent the details of the pattern theory representation, we describe briefly the ConceptNet

framework. In the next section we will see how the nodes and links in the ConceptNet are

mapped to pattern theory elements of generators and bonds. The ConceptNet will act as

a prior knowledge graph that will be sampled during inference to arrive at interpretations

that best describe the image evidence.

ConceptNet, proposed by Liu and Singh [39] and expanded to ConceptNet5 [54,55], is

a common sense knowledge base that maps concepts and their semantic relationships in a

traversable semantic network structure. The sources of the knowledge include DBPedia,

which extracts knowledge from the infoboxes on Wikipedia articles, Wiktionary, the free

multilingual dictionary, WordNet, OpenCyc ontology, and Open Mind Common Sense.

With over 3 million concepts, the ConceptNet framework serves as a source of cross-

domain semantic information from general human knowledge while supporting common

sense knowledge as expressed by humans in natural language. Technically, it encodes and
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expresses knowledge in a hypergraph, with the nodes representing concepts and edges

representing semantic assertions.

Fig. 2. ConceptNet is a semantic network of common sense knowl-
edge. Illustrated here is a small snippet from ConceptNet to show
how semantic relationships between concepts are expressed.

There are more than 25 relations (assertions) by which the different nodes are con-

nected, with each of these relations contributing to the semantic relationship between the

two concepts such as HasProperty, IsA, and RelatedTo. Each relation has a weight that

determines the degree of validity of the assertion given the sources and hence provides a

quantifiable measure of the semantic relation between concepts. Positive values indicate

positive assertions and negative values indicate the opposite. Figure 2 illustrates these

ideas; for example, the edge between nodes egg and plate represents an assertion with

the relation AtLocation to indicate that eggs can be placed or found in plates. While

ConceptNet has several assertions that represent different semantic relationships between

the different concepts, we currently utilize a subset; more specifically—RelatedTo, IsA,

HasA, HasProperty, CapableOf, UsedFor, Desires, and Similarity.

3. Video interpretation representation. Interpreting video activities, as with

any pattern recognition, involves the modeling of the underlying pattern such as atom-

icity, regularity and an inference methodology for using the understanding of these basic

properties of the pattern. Video activity interpretation consists of constructing a se-

mantically coherent composition of basic, atomic elements of knowledge called concepts

detected from videos. These concepts represent the individual actions and objects that
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are required to form an interpretation of an activity. We use Grenander’s canonical

representation of general pattern theory [28] to build interpretations.

3.1. Representing concepts using generators. Following Grenander’s notation [28],

each concept represents a single, atomic component called a generator gi ∈ GS where

GS is the generator space. The generator space represents a finite collection of all

possible generators that can exist in a given environment. In our context, we consider

the generator space to encompass all unique, non-repetitive concepts that can exist in

ConceptNet representing actions (verbs) and objects (nouns), and feature vectors (data-

based evidence).

Hence, the generator space (GS) can be partitioned into three disjoint subsets that

represent three types of generators—feature generators (F ), grounded concept generators

(G), and ungrounded context generators (U). Feature generators F = {gf1 , . . . , gfq}
represent individual feature subsets extracted from videos; with each subset being a

possible action or object. Then there are generators that represent basic concepts such

as elementary actions, such as pickup, stir, cut, or objects, such as knife, spoon, or plate.

In our approach, the collection of all concepts present within ConceptNet serves as the

generator space for concept generators.

These concept generators are of two types: grounded or ungrounded. Grounded

concept generators represent concepts for which we can have direct evidence in the

video, i.e., there are automated detectors for them. For instance, we have a classifier

that labels all utensils. We will use G = {g
1
, . . . , g

k
} to represent this set. Ungrounded

context generators represent concepts for which we do not have direct detectors avail-

able. For instance, while we have direct detectors for individual utensils, we might not

have direct detectors for the category “utensils”. We use U = {g1, . . . , gq} to represent

this generator subset.

3.1.1. Feature generators. Feature generators represent pieces of video regions that

can represent concepts such as elementary actions and objects. To allow for flexibility

in implementation, we consider two different types of features—handcrafted and deep

features. We experimented with three different strategies for extracting deep feature

representations.

• First, we used deep learning models such as convolutional neural networks (CNN)

on images to capture the feature descriptions for objects and CNNs based on optic

flows for actions (CNN-Flow) as was done in [17].

• In the second strategy, we followed the work in [61] and used mean-pooled values

extracted from fc7 layer for each frame from a CNNmodel pre-trained on a subset

of the ImageNet dataset [49]. This allowed us to exploit the spatial features

extracted from the video sequences and hence gives a suitable representation of

the content of the video while still allowing for some uncertainty in its generation

of labels for actions and objects in the video input.

• Finally, we used state-of-the-art features extracted from the two-stream archi-

tecture proposed by [52], following the work in [50] by training two VGG-16

networks on both RGB frames and stacks of optical flow images, following the

two-stream architecture. For better modeling the temporal sequences, we trained
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a long-short term memory model (LSTM) of the recurrent neural networks as an

additional layer on top of the two-stream architecture.

Handcrafted features consist of a histogram of optical flow (HOF) [12] for generating

action labels and a histogram of oriented gradients (HOG) [15] for object labels. HOF

features were extracted by computing dense optic flow frames from three temporally

sequential segments—each representing the start, development, and end of the action

sequence, respectively. A histogram of optic flow (weighted by magnitude) was then

constructed for these temporal segments to characterize the integral stages of the ac-

tion. The composite feature for action recognition is the ordered concatenation of the

individual HOFs.

In addition to video-based inference, we allowed for audio-based inference using bag-

of-audio words (BoAW) and spectrogram features as auditory feature descriptors [17].

It is to be noted that while other more sophisticated features are possible, these suffice

for now to demonstrate feasibility of the proposed approach.

3.1.2. Populating grounded concept generator set. For any video, the grounded concept

generator set is finite and corresponds to the possible object and elementary action

labels that can be supported by the detected features. For each feature generator, we

considered top-k (k = 3 to 5) possible object or action labels. These possible labels form

the grounded concept generator set. This helps us overcome feature errors.

The labels corresponding to each feature generator are constructed using trained ma-

chine learning models. A linear support vector machine (SVM) classifier based its labels

on HOF, HOG, and CNN-Flow features. Fully connected neural network classifiers were

used with the mean-pooled features and the Two StreamFlow features. This training

of the atomic action and object classifiers represents the only training needed in our

approach.

3.1.3. Ungrounded concept generator set: the priors. Ungrounded concept generators

represent the prior information that can be used to explain the grounded concept gen-

erators. These are concepts that are not detected directly in the input data but are

essential to understanding the relationships among the grounded concept generators. In

principle, this includes nodes in the entire ConceptNet, which is huge. So to constrain the

inference combinatorics, we limit the ungrounded concept generator set to be composed

of concepts that link two grounded concept generators in the ConceptNet.

Formally, let grounded concept generators be represented by g
i
for i = 1, . . . , N and

let g
i
Rg

j
represent an assertion between two concepts in the ConceptNet. Then, the

considered ungrounded concept generator, gk, satisfies the following expression:

not
(
g
i
Rg

j

)
∧
(
g
i
Rgk

)
∧
(
gk
Rg

j

)
. (1)

There can exist multiple ungrounded concept generators that connect two grounded

concepts; we keep all of them in the set U . The optimal contextualization cue would be

based on minimizing an overall energy; more on this later.

3.2. Connecting generators: Bonds. Each generator gi has a fixed number of bonds

called the arity of a generator denoted by w(gi)∀gi ∈ GS . Bonds are differentiated

at a structural level by the direction of information flow that they represent—in-bonds

and out-bonds as can be seen from Figure 3 (a) where the bonds representing RelatedTo
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and feature represent in-bonds and HasProperty and IsA represent out-bonds for the

generator put. These bond types are taken from the ConceptNet assertions.

(a)

(b)

(c)

Fig. 3. An illustration of generators and their bond structures. (a)

gives the structure of individual generators. The generators in black
represent grounded generators and those in red represent ungrounded
generators. (b) represents bonded pairs of generators. (c) represents
a complete configuration representing an interpretation for the video
“Put egg on plate”.

Each bond is identified by a unique coordinate and bond value taken from a set B

such that the jth bond of a generator gi ∈ GS is denoted as βj
dir(gi), where dir denotes

the direction of the bond.
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3.2.1. Bond compatibility. The viability of a closed bond between two generators is

determined by the bond relation function ρ. This function determines whether two

bonds β(gi) and β(gj) between two generators, gi and gj , are compatible and is denoted

by ρ[β(gi), β(gj)] or simply as ρ[β, β]. This function represents whether a given bond

βj
dir(gi) is either closed or open. The bond relation function is given by

ρ[β(gi), β(gj)] = {TRUE,FALSE}; ∀gi, gj ∈ GS. (2)

A bond is said to be open if it is not connected to another generator through a bond;

i.e., an out-bond of a generator gi is connected to a generator gj through one of its in-

bonds or vice versa. For example, take the first case from Figure 3 (b) representing the

bonded generator pair {put and HOF}. The bonds representing HasProperty, IsA, and

RelatedTo are considered to be open, whereas the bond representing feature represents a

closed bond.

3.2.2. Types of bonds. There exist two types of bonds—semantic bonds and support

bonds. Semantic bonds are a representation of the semantic relationship between two

concept generators. These bonds represent the semantic assertions from ConceptNet

that we discussed in Section 2. The direction of semantic bonds signify the semantics of

a concept and the type of relationship shared with its bonded generator. For example,

in Figure 3(b), the bond IsA between concepts egg and food is a symbolic representation

of the semantic assertion that Egg is a (type of ) Food, signified by the direction of the

bond. Similarly, Figure 4 illustrates an example configuration with the generators pour,

oil, liquid, and their semantic relationships given by semantic bonds RelatedTo, IsA.

The bonds highlighted in red indicate the presence of ungrounded context generators,

representing the presence of contextual knowledge. Semantic bonds are quantified using

the strength of the semantic relationships between generators through the bond energy

function:

asem(β′(gi), β
′′(gj)) = tanh(φ(gi, gj)), (3)

where φ(.) is derived from the strength of the assertion in ConceptNet between concepts

gi and gj through their respective bonds β′ and β′′. The tanh function normalizes the

output from φ(.) to range from -1 to 1. This is important to note as there can exist

negative assertions between two concepts that are not compatible and hence reduces the

search space by avoiding interpretations with contrasting semantic assertions.

Support bonds connect (grounded) concept generators to feature generators that repre-

sent direct image evidence. These bonds are used to preserve the provenance of the con-

cepts with respect to direct data-based evidence. Support bonds are quantified through

the bond energy function:

asup(β
′(gi), β

′′(gj)) = tanh(f(gi, gj)), (4)

where f(.) is derived from the confidence scores of classification models between feature

generators gi and the respective concept generator gj through their respective bonds β′

and β′′.

3.3. Interpretations: Configurations of generators. Generators can be combined to-

gether through their local bond structures to form structures called configurations, c,

that represent semantic interpretations of video activities. Each configuration has an
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Fig. 4. Representation of an interpretation using pattern theory.
Grounded concepts are represented in black while ungrounded (con-
textualization cues) are in red. The dashed links represent the op-
timal semantic relationship between two grounded concepts. Note:
open bonds allow for the expansion of the interpretation, if desired.
Also, only a selection of the bond structure of each generator is shown
in this example.

underlying graph topology, specified by a connector graph σ. The set of all feasible

connector graphs σ is denoted by Σ, also known as the connection type. Formally, a

configuration c is a connector graph σ whose sites 1, . . . , n are populated by a collection

of generators g1, . . . , gn expressed as,

c = σ(g1, . . . , gi); gi ∈ GS . (5)

The collection of generators g1, . . . , gi represents the semantic content of a given config-

uration c. For example, the collection of generators from the configuration in Figure 4

gives rise to the semantic content “pour oil (liquid) (fuel) (black)”.

The set of all feasible connector graphs σ is formally denoted by Σ, also known as the

connection type. If one restricts this to an undirected fixed lattice structure, we get a

Markov Random Field (MRF). If Σ is a directed acyclic graph with a fixed number of

sites, we get a Bayesian Network or Dynamic Bayesian Network. If Σ is restricted to

an and-or tree structure, we have AND-OR graphs. We adopt a more flexible structure

than these, allowing for a different number of sites; specifically, we use the constraints

of a partially ordered set (POSET) to capture the hierarchical nature of the generators.

There is ordering between the levels of the hierarchy, but no ordering within a hierarchy

level. In our framework, the hierarchy is set up such that feature generators are at

the bottom level, the grounded generators are at a higher level, and the ungrounded

generators are at the highest level. In general, if gi connects some out-bond β(gi) to an

in-bond β(gj) of another generator gj , then l(gi) ≥ (gj).

3.4. Regular configurations. The formal specification of regularity in the proposed

framework is denoted by R(GS, ρ,Σ), where GS denotes the generator space, ρ the bond

compatibility, and Σ the connector type. The regularity R specifies the principles that

govern the construction of regular structures to represent patterns. Additionally, the
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regularity helps define efficient operations on the regular configuration space C(R) that

does not violate the semantics of the patterns that are formalized. This will be beneficial

in the design of efficient algorithms to perform probabilistic analysis of these structures.

To formalize the notion of regular configurations, we determine a configuration c to

be called locally regular if ∧
∀(β′,β′′)∈c

ρ(β′(gi), β
′′(gj)). (6)

Equation (6) is known as the first structure formula. A configuration c is said to be

globally regular if σ ∈ Σ.

A configuration is then called regular if it is both locally and globally regular. The

set of all regular configurations is denoted by C(R). This formal notion helps us design

inference algorithms that search the regular configuration space C(R) in an efficient and

smart fashion. Note also that C(R) represents the union of all subspaces C(σ), ∀σ ∈ Σ.

3.5. Probabilistic superstructure of configurations. Given a set of video feature gener-

ators, F , and the prior knowledge in terms of the ConceptNet graph, CN , our goal is to

find an interpretation, c, that obeys the regularity R(GS , σ, ρ). While this first structure

regularity captures the conformity of the given configuration to local and global structure

constraints, it does not measure the degree of regularity, which is necessary to able to

choose among configurations. This degree is given by the second structure formula that

uses the bond energy weights that were defined by equations (3) and (4). The second

structure formula quantifies the first structure formula with a probability density func-

tion p(c|CN , F ) on the configuration space C(R). We factor this probability into two

parts: a likelihood term, p(F |c) and a prior, p(c|CN), normalized by the distribution

over the features

p(c|CN , F ) =
p(F |c)p(c|CN)

p(F |CN )
. (7)

This probability can be captured using energy functions

P (c|CN , F ) =
1

Z
e−E(F |c)−E(c|CN ), (8)

where E(F |c) represents the energy of the configuration c that involves the grounded gen-

erators and the detected features, while E(c|CN) captures the energy of the ungrounded,

prior, generators. The total energy E(c) of a configuration c is the sum of these energies:

E(c) = E(F |c) + E(c|CN ).

We capture the energy of a configuration by the energy of all the individual bonds

present in the configuration. The likelihood energy term represents the contribution

of support bonds to the overall energy. This is a reflection of the confidence of the

underlying machine learning models and was represented by:

E(F |c) = −
∑

(β′,β′′)∈c

asup(β
′(gi), β

′′(gj)). (9)

To capture the prior energy of the configuration, we use the combined energy of all

semantic bonds in the configuration and a structure quality prior term as follows:

E(c|CN) = −
∑

(β′,β′′)∈c

asem(β′(gi), β
′′(gj)) +Q(c). (10)
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A lower energy means that the generators (concepts) in the configuration are closely

associated with each other based on their semantic associations. We chose the structure

quality prior term Q(c) to be:

Q(c) = k
∑
ḡi∈G′

∑

βj
out∈ḡi

[D(βj
out(ḡi))], (11)

where G′ is a collection of ungrounded contextual generators present in the configuration

c, βout represents each out-bond of each generator gi and D(.) is a function that returns

true if the given bond is open. k is an arbitrary constant that scales the extent of the

detrimental effect that the ungrounded context generators have on the quality of the

interpretation. The cost factor Q(c) restricts the inference process from constructing

configurations with degenerate cases such as those composed of unconnected or isolated

generators that do not have any closed bonds and as such do not connect to other

generators in the configuration.

The partition function, Z, in equation (8), involves a double sum:
∑

σ

∑
c. The first

sum is over the possible global structures and the second is over all possible generator

combinations for any given global structure. We have a grand Gibbs ensemble. This

makes it computationally hard to make exact inferences.

4. Inferring interpretations. Searching for the best semantic description of a video

involves maximizing the probability of a configuration and hence minimizing the energy

function E(c). This optimization process represents the inference process. The solution

space is very large as both the number of generators and underlying structure structures

can be variable. For example, the combination of a single connector graph σ and a gen-

erator space GS give rise to a space of feasible configurations C(σ). While the structure

of the configurations c ∈ C(σ) can be identical, their semantic content is varied due to

the different assignments of generators to the sites of a connector graph σ.

4.1. Explore solution space using MCMC simulated annealing. A feasible optimization

solution for such exponentially large space is to use a sampling strategy and employ an

efficient Markov Chain Monte Carlo (MCMC) based simulated annealing process. The

MCMC based simulated annealing method uses two proposal functions that are rep-

resentative of a move in the search space—the configuration reset move and grounded

switch move functions. Each move function in the simulated annealing process proposes

a candidate configuration to aid in the search for the optimal configuration that best

captures the semantics of the given video activity. The configuration reset move function

allows the search to reset or initialize to a random configuration that helps in exploring

the search space in a more efficient manner. This move is used to both initialize the

search as well as to reset the search to a random start when the current search state

is in the middle of a local minima that could be hard to handle with smaller changes.

The grounded switch move function, on the other hand, proposes candidate configura-

tions based on smaller, Markovian changes to the current configuration by switching the

grounded concept generators.
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Algorithm 1: MCMC based simulated annealing for inference

1 MCMC Simulated Annealing (F,G,U, α, p, kmax, T0);

2 c ← resetConfiguration(F,G,U)

3 best ← c

4 for k ← 1 . . . kmax: do

5 t ← UniformSample(0, 1)

6 if t < p then

7 c′ ← resetConfiguration(F,G)

8 end

9 else

10 c′ ← groundedSwitch(c,G, U)

11 T ← T0 × αk

12 if E(c′) < E(c) then

13 c ← c′

14 end

15 else

16 z ← UniformSample(0, 1)

17 if z < exp(−(E(c′)− E(c))/T ) then

18 c ← c′

19 end

20 if E(c) < E(b) then

21 best ← c

22 end

23 end

24 return best

The algorithm for the MCMC-based simulated annealing process is shown in Algo-

rithm 1. We begin with the set of detected feature generators F , the corresponding set

of plausible grounded concept generators G, and the ungrounded concept generators U

generated through ConceptNet that form the background knowledge of grounded con-

cept generators. We initialize the search through the configuration reset function, which

samples an initial configuration c′ that provides a starting point for the search. The

proposed configuration is then used as initialization for the “best” configuration seen so

far.

The search is initiated and performed for a fixed number of iterations kmax defined in

the parameters. The choice between the two move proposal functions is decided through

sampling of a value in the uniform distribution between 0 and 1. If the sampled value

t is in the range 0 to p, then the reset configuration move function is called to reset

the configuration to a random starting configuration. Hence, the grounded switch move

function is called with a probability 1 − p. The value of the probability p is given in

the parameters to the annealing function. At each step of the annealing process, the

temperature is updated based on a cooling rate given by αk, where α is a pre-defined
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constant. Each step of the simulated annealing process yields a new configuration c′,

which is either accepted or rejected. The proposed configuration (c′) is accepted if its

energy is lower than the current configuration c. The proposed configuration is also

chosen with a certain probability if its energy is proportional to the energy difference

between the current and proposed configurations.

4.2. Constructing and modifying configurations. Both move functions employ the use

of three processes that allow them to construct candidate configurations in the search

process. The processes are (1) grounding process, (2) grounded switch process, and (3)

contextualization process. Each process makes changes to an existing configuration using

a subset of the generator space (GS) to guide their execution: the grounding process uses

the feature generator (F ) and grounded concept generator (G) subspaces. The grounded

switch process and the contextualization process use the grounded concept generator (G)

and the ungrounded concept generator (U) subspaces, respectively.

4.2.1. Grounding process. The grounding process involves the establishment of sup-

port bonds between existing feature generators in the configuration and the grounded

concept generators in the configuration. Recall that we allow for multiple labels for

each feature evidence. When creating a configuration, the grounding process proposes

a grounded concept generator that explains the presence of a feature generator in the

configuration. This is the first step in the configuration reset move function (Section

4.3) as illustrated in Algorithm 2 with line 5. A grounded concept generator gi is chosen

at random from a uniform distribution from G, such that it explains the presence of

the corresponding feature generator g
i
. The chosen grounded generator is added to the

configuration c and possible support bonds are established between the generator pair.

The bond energy is quantified based on the confidence score as seen from equation (4).

An example of a bonded feature generator-grounded generator pair can be seen from

Figure 3 (b), where bonded pairs {HOG, egg} and {HOF, put} are presented.

4.2.2. Grounded switch process. The grounded switch process is used by the grounded

switch move proposal function to explore the search space using guided, Markovian

changes based on the grounded concept generator subspace (G) of the generator space

(GS). An existing grounded concept generator gk is chosen based on two different

mechanisms—random and guided—and removed from the configuration c. In the random

mechanism, the grounded generator is chosen from c based on a uniform distribution. In

the guided mechanism, the grounded generator gk is chosen such that it possesses the

least semantic significance within the configuration; i.e., the chosen grounded generator

has closed semantic bonds that possess high energy. Then, all ungrounded concept gen-

erators that share a closed semantic bond with the selected generator gk are also chosen

and removed from the configuration. m replacement candidates are chosen from the

subset G of the generator space GS such that gi ∈ GS and gj �= gi. Then, a grounded

generator is chosen such that it minimizes the energy of the configuration c′, and possible

support bonds are established. The bond energy is quantified based on the confidence

score as seen from equation (4). This is the first step in the configuration reset move

function (Section 4.4) as illustrated in Algorithm 3 with lines 2-9.
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4.2.3. Sampling from ConceptNet using contextualization. For ungrounded generators

to provide semantic context to grounded generators, we sample from the ConceptNet us-

ing the concept of contextualization. We borrow this concept from linguistics [31], which

in the context of video interpretation to refer to the integration of past knowledge to aid

in interpreting activities in videos. More specifically, “concept” refers to actions and ob-

jects that constitute an activity; “presuppositions” refers to the background knowledge of

concepts, their properties and semantics. Note that the goal is to generate interpretations

of a given activity rather than just simple recognition.

The contextualization process allows semantic relationships to be established among

the grounded concepts in a configuration. It is an essential process shared by both move

proposal functions as seen from line 6 of Algorithm 2 and lines 4 and 10 from Algorithm 3.

It involves the extraction of contextualization cues from ConceptNet and the search for

the optimal semantic relationships between two grounded concept generators.

Formally, let ungrounded concept generators be represented by gi for i = 1 · · ·N and

let giRgj represent relations (or assertion) between two concepts. For example, consider

the example configuration in Figure 5, which contains a connected structure of genera-

tors which represent concepts from the ConceptNet. The generators highlighted in gray,

i.e., g5 and g7 represent the grounded concept generators with data evidence from the

input video data. The other generators represent the contextual concept generators or

ungrounded concept generators extracted from ConceptNet. The ungrounded concept

generators are derived up to a given depth d. The depth d controls the level of contextu-

alization cues that are connected to the grounded generators. For example, the generator

g1 is at a depth 2 from the grounded generator g
5
. Each of these concept generators are

connected through weighted connections or semantic assertions given by wij for a given

generator pair {gi, gj}. These weights are quantified representations of the semantic re-

lationship between the two concepts gi and gj present in the ConceptNet Framework.

For example, in Figure 2, if the concepts egg and food are gi and gj , respectively, then

wij is 1.0, 2.0 and 4.88 for the assertions IsA, UsedFor, and RelatedTo, respectively.

The process of constructing the optimal contextualization cue for two given grounded

generators gi and gj is as follows:

(1) Extract the subgraph of all connected concepts from ConceptNet that represent

the contextual properties of a given generator gi up to a given depth d.

(2) Construct sub-configurations that are representative of all concepts and hence

subsequent semantic relationships that are able to connect the two grounded

generators.

(3) Find the optimal sub-configuration that minimizes the energy.

For example, consider the subgraph extracted from ConceptNet for two grounded con-

cept generators g5 and g7 in Figure 5. The complete sub-graph that comprises all concept

generators related to all detected grounded generators is given by the configuration:

c = σ(g0, g1, g2, g3, g4, g5, g6, g7, g8, g9, g10, g11). (12)

The sub-configuration that represents the contextual information for the generator g5 is

given by the configuration:

c1 = σ(g0, g1, g2, g3, g4, g6, g9). (13)
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Fig. 5. An example of a subgraph extracted from ConceptNet con-
necting the grounded concept generators g5 and g7, shaded in gray.
The subconfiguration c′ represents the optimal contextualization
cues (g8 and g9, shaded in blue) connecting the grounded concept

generators.

Similarly the sub-configuration that represents the contextual information for the gener-

ator g7 is given by the configuration:

c2 = σ(g8, g10, g11). (14)

The goal is to find the optimal configuration that minimizes the energy of the overall

configuration that is representative of the semantic interpretation constructed. Let the

optimal sub-configuration that is representative of the optimal contextualization cue that

connects the generators g5 and g7 be c′

Hence the probability of the sub-configuration that connects the two configurations

c1 and c2 is given by:

P (c′|c1 ∪ c2) = P (c′|c), (15)

where c′ is the sub-configuration that represents the contextualization cues that give the

optimal semantic relationships between two grounded generators. The probability of a

configuration c is given by the sum of bond energies within the configuration given in

equation (12).

Hence,

P (c′|c) =

∑
(gi,gj)∈c′

asem(β′(gi), β
′′(gj))

∑
(gi,gj)∈c

asem(β′(gi), β′′(gj))
. (16)
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Constructing the optimal contextualization cues for a given set of grounded concept

generators is a probabilistic induction of the sub-configuration with minimal energy which

is reflective of the semantic relationships among the grounded concept generators.

4.3. Configuration reset move. The configuration reset move proposal function is used

to randomly sample a configuration from the search space. This move serves two major

purposes—it is used to initialize the search process as well as reset the current search

configuration to a random start which ensures that the search is diversified. When called

during the search process, the resultant configuration is likely to possess a different

structure and allows the grounded switch proposal function to explore the search space

using ConceptNet in an efficient fashion as the probability of some generators (both

grounded and ungrounded) varies due to the introduced changes.

Algorithm 2: Configuration Reset Proposal Function

1 resetConfiguration (F,G,U);

2 c′ ← Empty Configuration

3 for g
i
∈ F : do

4 Add feature generator g
i
to configuration c′

5 Add grounded generator gk that explains g
i
to c′; where gk ∈ G

6 Add ungrounded generators {gj} ∈ U to c′ such that there exists gjRgk

7 end

8 return c′

The pseudocode for the configuration reset proposal function is shown in Algorithm 2.

We begin by random selection of a feature generator g
i
from the subset F based on a

uniform distribution. The chosen feature generator is then added to a new configuration.

A grounded concept generator gk from G, that corresponds to the feature generator g
i
, is

chosen at random from a uniform distribution, such that it explains the presence of the

feature generator g
i
. This is performed by the use of the grounding process described in

Section 4.2.1. The grounding process is repeated for all feature generators in F . Then,

semantic relationships are established between the grounded concept generators in the

configuration (Section 4.2.3). Note that when adding a new generator to a configura-

tion, bonds are established and closed between compatible generator-bond pairs in the

configuration. This process is visually illustrated in Figure 6. We use the Generator

Space (GS) from Figure 6(a) to call the grounding process to add grounded generators

until all feature generators are explained. Then the contextualization process is called

to establish semantic relationships among the grounded concept generators.
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(a)

(b)

(c)

Fig. 6. An illustration of steps in the configuration reset proposal
function. (a) shows the generator space specific to a given video

of groundtruth “Read Brownie”. (b) shows the functioning of the
grounding process. (c) shows the functioning of the contextualiza-
tion process to establish semantic relationships among the grounded
concept generators.

4.4. Grounded switch move to guide the search. Initially, the configuration reset func-

tion introduces a set of grounded concept generators derived from machine learning

classifiers. Then, a set of ungrounded context generators, representing the contextual-

ization cues, are populated for each grounded concept within the initial configuration.
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Bonds are established between compatible generators when each generator is added to

the configuration. Each jump given by the grounded switch move function gives rise to

a configuration whose semantic content represents a possible interpretation for the given

video. Interpretations with the least energy are considered to have a higher probability

of possessing more semantic coherence. Hence an additional optimization constraint is

to minimize the cost factor Q given in (11) by ensuring the least number of open bonds

for each ungrounded contextual generator in the configuration.

Algorithm 3: Grounded Switch Proposal Function

1 groundedSwitch (c,m);

2 Randomly select gk ∈ c

3 Form a set G′ of m generators gi such that gi ∈ GS and gj �= gi
4 Form a set C ′ of generators {gj} such that gj ∈ C and giRgj

exists ∀gi ∈ G′

5 Remove gj from c

6 Remove {gj} ∈ C ′ from c such that there exists gi
Rgj

7 c′ ← c

8 Select generator gi that minimizes E(σ(c′, gi))

9 Add gi to c′

10 Add {gk} ∈ C ′ to c such that there exists giRgk

11 c′′ ← c′

12 return c′′

A swapping transformation is applied to switch the generators within a configura-

tion to change the semantic content of a given configuration c. Algorithm 3 shows the

grounded switch proposal function which induces the swapping transformation. We begin

with an initial configuration c which is the current configuration in our search process.

An existing grounded concept generator gk is chosen and removed from the configura-

tion c. Then, all ungrounded concept generators that share a closed semantic bond with

the selected generator gk are also chosen and removed from the configuration. m re-

placement candidates are chosen from the subset G of the generator space GS such that

gi ∈ GS and gj �= gi. Then, a grounded generator is chosen such that it minimizes the

energy of the configuration c′. This is achieved using the grounded switch process from

Section 4.2.2. Semantic relationships are established using the contextualization process

from Section 4.2.3 in which ungrounded generators which share an optimal relationship

with grounded generators in c are selected and added to the configuration. This results

in a new configuration c′, thus constituting a move in the configuration space C(σ). This

process is visually illustrated in Figure 7. The grounded switching process is used to

switch grounded generators from the current configuration from Figure 7(a). Then the

contextualization process is called to establish semantic relationships among the new set

of grounded concept generators.

4.5. Initialization of the search. The search for the MCMC-based inference is initial-

ized using the configuration reset move proposal which also ensures that the search is

diversified through initialization of the configuration. The search is initialized using the
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(a)

(b)

(c)

Fig. 7. An illustration of steps in the grounded switch proposal func-
tion. (a) shows the configuration in the current step of the search

process. (b) shows the functioning of the grounded switch process.
(c) shows the functioning of the contextualization process to establish
semantic relationships among the new grounded concept generators.

reset configuration process described in Section 4.3. The resultant configuration is a ran-

domly sampled configuration from the generator space GS for a given configuration and
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provides an initial starting point for the Markovian changes proposed by the grounded

switch move function.

5. Experimental evaluation. We begin with discussion on the four publicly avail-

able datasets that we use, followed by presentation of qualitative and quantitative results

on them. Performance is quantified using measures that facilitate the comparison with

other approaches, such as precision, F-Score, and BLEU score [46].

Comparable approaches: We compare performances against a variety of compet-

ing approaches – discriminative methods (DM) [37], hidden Markov models (HMM) [37],

context-free grammars (CFG+HMM) [37], factor graphs [59], different manifestations

of deep recurrent neural networks [45, 61, 65], and generic pattern theory (PT) ap-

proaches [20]. We also consider a variation of pattern theory approach in [20], where

we use simple, pairwise semantic relationships given by the ConceptNet Similarity edge

weights called “PT+weights”.

5.1. Datasets. The Charades dataset [51] is a challenging benchmark containing 9,848

videos across 157 action classes with 66,500 annotated activities, including nouns (ob-

jects), verbs (actions), and scenes. Complex co-occurrences of realistic, human activities

offer a considerable challenge for the proposed framework along with the complex seman-

tic relationships among the concepts. We use the same splits for training and testing

from [51] and [50] and evaluate video classification using the evaluation criteria and code

from [51] for fair comparison.

The Microsoft Video Description Corpus (MSVD) is a publicly available dataset that

contains 1,970 videos taken from YouTube. On an average, there are 40 English descrip-

tions available per video. We follow the split proposed in prior works [45,59,61,65], and

use 1,200 videos for training, 100 for validation, and 670 for testing.

The Breakfast Actions dataset consists of more than 1000 recipe videos, consisting of

different scenarios with a combination of 10 recipes, 52 subjects and differing viewpoints

captured from up to 5 cameras, which provides differing qualities of videos with varying

amounts of clutter and occlusion. The units of interpretation are temporal video segments

of these videos, given by the video annotation provided along with the dataset.

The Carnegie Mellon University Multimodal Activity dataset (CMU) contains multi-

modal measures of human activities such as cooking and food preparation. The dataset

contains five different recipes: brownies, pizza, sandwich, salad, and scrambled eggs.

Spriggs et al. [56] generated the groundtruth for some videos and recipes. The experi-

ments were performed on the brownie recipe videos for performance comparison with [17].

5.2. Qualitative evaluation. The ability of the proposed approach using ConceptNet

and contextualization to adapt to novel domains without explicit training for seman-

tics can be seen from Figures 8, 9, 10, and 11. The approach was able to demonstrate

a number of different traits that are demonstrative of its domain adaptability such as

(1) inferring interpretations with grounded concepts whose semantics is beyond simple,

pairwise relationships, (2) handling errors in underlying concept proposals, (3) infer-

ring semantics beyond those from groundtruth, and (4) handle multiple modalities and

varying viewpoints such as egocentric video data.
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Figure 8 illustrates the semantic richness of the interpretations produced by our ap-

proach with contextualization cues that go beyond what is seen in the image. For ex-

ample, take a video with groundtruth as “fix hair”. Our approach was able to contend

the presence of the grounded concepts fix and hair through the ungrounded contextual

generators prepare, groom, and comb. Without contextualization cues, not only are there

errors in the interpretations of the prior pattern theory approaches, but they are not as

rich and descriptive.

It is also to be noted that for many of the interpretations, the label with the highest

confidence score was not the one used in its final (best) interpretation. This is illustrated

in Figure 9, where the approach was able to arrive at the correct interpretation even

though the confidence scores for the correct grounded concept generators were lower

than others. For example, the confidence scores of the action and object labels {read,
brownie box} was lower than that of the combination {stir, brownie box}. However,

the contextualization cues allowed for establishing semantic relationships beyond simple,

direct relations to arrive at the correct interpretation.

The proposed approach was able to use infer interpretations of video activity that,

while different from the groundtruth, conveyed the same semantic content. This is illus-

trated in Figure 10, where the approach was able to generate interpretations beyond the

groundtruth semantics while preserving the semantic structure of the event. For exam-

ple, when presented with a video with groundtruth “Add salt and pepper”, our approach

inferred an interpretation with semantics “Spoon salt and pepper”. It is interesting to

note that the action “spoon” had only been used in the context of “Spoon butter” in

the dataset groundtruth annotations. This can arguably be attributed to the contextu-

alization process’ ability to handle uncertainty in underlying visual cues to arrive at a

semantically coherent interpretation whereas domain specific pattern theory approaches

had an interpretation of “Spoon butter”. This is indicative of the power of semantics in

ConceptNet and the ability of contextualization cues to provides a means for semantically

connecting concepts beyond pairwise relationships.

Finally, as seen from Figure 11, when given with multiple modalities and/or difficult

viewpoints such as egocentric data, the approach was able to use the prior knowledge from

ConceptNet to arrive at interpretations that are semantically coherent. The challenges

associated with egocentric video data (such as camera shake, occlusion, etc.) as well as

multimodal sensory data fusion was handled well by our approach.

5.3. Quantitative results. In this section, we evaluate the proposed approach on the

different datasets described in Section 5.1 and present the quantitative results of the

experiments. We show that the proposed approach has competitive performance on a

variety of challenges presented from each dataset—complex visual scenes due to co-occur-

rences of activities (Charades), complex semantic relationships in captioning (MSVD

dataset), unbalanced class distribution and weak features (Breakfast Actions dataset),

and multiple modalities (CMU Multimodal Dataset).

5.3.1. Complex visual data. For evaluation of the performance on data with complex

semantic relationships, we use the Charades dataset [51] and report the Mean Average

Precision (mAP) score to compare against other comparable approaches. It can be

seen from Table 1 that the proposed approach is competitive in its performance. The
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Groundtruth Interpretation using Contextualization

A sloth is climbing the side of a crib A monkey is climbing on the bed.

(a)

Walk through doorway Walk through doorway

(b)

Fix hair Fix hair

(c)

Fig. 8. Qualitative examples of interpretations generated by the ap-
proach in this paper. The first column shows the groundtruth for
the input video, the second column shows interpretations generated
by the pattern theory approach using ConceptNet and contextual-
ization. It can be seen that contextualization generates rich, deep
semantic interpretations which are able to allow for semantic rela-

tionships beyond simple, pairwise relationships.

Asynchronous Temporal Fields (ATF) approach [50] factors both sequential temporal

information and intent. It should be noted that our approach is outperformed only when

the ATF approach factors both temporal sequencing and intent.

We would like to point out that temporal sequence modeling has been successfully

included in the prior pattern theory approaches [53], showing improvements up to 30%

in long temporal sequence. We did not wish to conflate this paper with the modeling
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Groundtruth Output Interpretation

Read Brownie Box Read Brownie Box

(a)

Put egg on plate Put egg on plate

(b)

Pour dough on pan Pour dough on pan

(c)

Fig. 9. Qualitative examples of interpretations generated by the ap-
proach in this paper where the concepts in the final (correct) in-
terpretation were not the top prediction from underlying machine
learning models. The first column shows the groundtruth for the
input video and the second column shows interpretations generated
by the pattern theory approach using ConceptNet and contextual-
ization. It can be seen that contextualization allows for errors in the
underlying models, yet uses prior knowledge to correct such errors
in the final interpretation.
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Groundtruth Output Interpretation

Add salt and pepper. Spoon salt and pepper

(a)

A monkey is fighting with a man A monkey is playing with a human.

(b)

Pour eggs on pan. Pour eggs into bowl.

(c)

Fig. 10. Examples of instances where the model was able to gener-
alize beyond the semantics within the dataset but was still able to
convey the same semantic content.
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Groundtruth Output Interpretation

Pour from bowl to pan Pour from bowl to pan

(a)

Spray pan Spray pan

(b)

Take eggs Take eggs

(c)

Fig. 11. Examples of instances where the model was able to handle
multimodal content as well as variations from a viewpoint such as
egocentric videos.
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Table 1. Results on Charades dataset. ATF refers to Asynchro-
nous Temporal Fields method. PT + ConceptNet semantics refers

to the proposed approach. Trained semantics will indicate the use of
training annotations to capture semantics between concepts. Note:
All models use 2-stream features extracted from the videos as input,
unless otherwise indicated.

Approach mAP

LSTM 17.80%

RGB + ATF + trained semantics, no intent, no temporal 17.30%

RGB + ATF + trained semantics, no temporal, intent 17.40%

RGB + ATF + trained semantics, temporal, no intent 17.40%

ATF + trained semantics, intent, temporal 22.40%

PT + ConceptNet semantics, no intent, no temporal 29.69%

LSTM + PT + ConceptNet semantics, no intent, no temporal 32.56%

of temporal information as we were evaluating the benefits of using a knowledge base,

rich with semantic information to reduce training requirements and as such temporal

information, while useful, would not fit within the scope of the paper.

5.3.2. Complex semantic relationships. For evaluation of the performance on data

with complex semantic relationships, we use the Microsoft Video Description Cor-

pus (MSVD) dataset and report the BLEU score to compare against other comparable

approaches. Our proposed approach has a comparable or better performance compared

to the other approaches and is very close to the top performing approach as seen from

Table 2. An important aspect to note is that the other state-of-the-art approaches take

into account more complex features that are more descriptive of the concepts within

the video; by contrast, we take into account only the mean-pooled CNN features across

frames for generating candidate labels for all concepts. For example, the HRNE model

[45] makes use of temporal characteristics in the video; the Temporal Attention model

[65] leverages the frame-level representation from GoogleNet [58] as well as video-level

Table 2. Results on the Microsoft Video Description Corpus
(MSVD) dataset. Top 10 means that we consider the best of 10
interpretations generated by the approach.

Approach BLEU Score

Factor Graph Model [59] 13.68%

S2VT [61] 31.19%

S2VT + COCO & FLICKR [61] 33.29%

LSTM + Enc-Dec [65] 41.92%

HRNE [45] 43.6%

Our Approach (Best) 34.93%

Our Approach (Top 10) 42.98%
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representation using a 3-D Convolutional Neural Network trained on handcrafted de-

scriptors in addition to an attention model that provides dynamic attention to specific

temporal regions of the video for generating descriptions.

5.3.3. Weak features and uncertainty. To evaluate the performance of the approach

on data with more uncertainty and to demonstrate the use of knowledge, we evaluate on

the Breakfast Actions dataset with handcrafted features (Section 3.1.1). The proposed

approach outperforms both the performance of the HMM-based and the Context-Free

Grammar models reported by Hilde [37] as well as other pattern theory models [20] as

seen from Table 3. It is important to note that the performance of the proposed approach

is remarkable considering that the model is neither trained specifically for the kitchen

domain nor on the dataset itself other than for obtaining the starting grounded action

and object labels. Other methods are restricted by the vocabulary of the training data

to build their descriptions. For example, the Context-Free Grammar method makes use

of temporal information such as states and transitions between states to build the final

descriptions which is not the case with our approach.

Table 3. Results on Breakfast Action dataset. Top 10 means that
we consider the best of 10 interpretations generated by the approach.

Approach Precision

HMM [37] 14.90%

CFG + HMM [37] 31.8%

RNN + ECTC [33] 35.6%

RNN + ECTC (Cosine) [33] 36.7%

PT+weights (Top 10) [20] 33.40%

PT+training (Top 10) [20] 38.60%

Our Approach (Top 10) 41.87%

5.3.4. Multimodal feature fusion. To demonstrate the ability of our framework to han-

dle multiple sources of input and different modalities, we use multi-modal features to

leverage the auditory features present in the CMU activities dataset. We use audio

feature representations such as bag-of-audio words and spectrograms features extracted

from the audio. Table 4 compares our performance with the best performing feature set

reported in [17] (PT+training), and its variation that replaces training with ConceptNet

Similarity edge weights (PT+weights).

Table 4. Results on CMU Kitchen dataset with audio and video
features used in conjunction.

Approach F-Score

PT+training [17] 69.9%

PT+weights 64.6%

Our Approach 72.7%
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Table 5. Impact of training data imbalance. We show the per-
formances (F-Score) of our approach and prior pattern theory ap-

proaches (PT+training and PT+weights) for different activity cate-
gories that differ in the number of training samples.

Approach Num. of samples

≤ 10 10 - 20 20 - 40 ≥ 40

PT+training [17] 11.81% 17.36% 22.98% 35.47%

PT+weights 25.41% 36.57% 37.10% 34.16%

Our Approach 34.76% 40.07% 38.23% 38.35%

5.3.5. Immunity to unbalance in training data. Not all labels are equally represented

in most training data. This is particularly acute as the number of labels increases. To

demonstrate that our method is immune to this effect, we partitioned the activity classes

labels into 4 different categories based on the amount of training data available. Table 5

shows the performance for our approach as compared to prior pattern theory approaches,

PT+training and PT+weights. As expected, performance of PT+training relying on

annotations [20] increases with an increase in training data, whereas our approach is

stable.

6. Connection to related works. The pattern theory approach presented in this

work draws heavily from Grenander’s original formulation and stitches together many

seminal concepts and contributions made by others. For instance, the concept of hi-

erarchical compositional representation is similar to grammatical models of Zhu and

Mumford [66] and was also expounded in depth by Geman, Potter, and Chi [22]. The

data driven nature of the inference process related to grounded generators has paral-

lels to data-driven MCMC algorithm used for image parsing by Tu, Chen, Yuille, and

Zhu [60]. They used discriminative methods to propose the candidate objects, much like

our machine learning approach to suggest grounded generators, and then used MCMC

dynamics to construct the parse graph representations.

As mentioned earlier, the canonical representations of pattern theory subsumes many

other symbolic representations as special cases, i.e., by restricting the global regularity,

Σ, to special structures such as lattice, DAGS, tree structure, and so on. So, there

are similarities of the adopted approach to others in the literature. There are many

works that use probabilistic graphical models [16, 37] to explicitly model the semantic

relationships in human activities [37, 38]. A variety of methods have been used, such as

context-free grammars [35], probabilistic description frameworks [4], event probability

sequences [14], Markov networks [42], Petri networks [5], and And-Or graphs [6, 63], to

name a few. These approaches require labeled training data whose sizes increase non-

linearly with different semantic combinations of possible actions and objects in the scene.

The main limitation of most of the current graphical modeling approaches is the

implicit closed world assumption. The labels are limited to what is available in the

annotation. Even for fixed object and action sets, most cannot handle the simultaneous

occurrence of multiple events. Most ignore the possibility of object clutter and use all
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of the detected objects to generate an interpretation. The structure of descriptions is

pre-specified in the training process. For these methods, the need for more extensive pre-

labeled video training data grows rapidly as the size of the model increases, to account

for the full range of variabilities. For example, if all the training instances are “crack

egg”, then it will not be able to compose a description containing more elements such as

“crack an egg in a bowl” or “crack an egg in a bowl using a spoon”. For implicit models,

such as discriminative models, the other objects, i.e., bowl and spoon, will be noise and

an approach based on probabilistic models would need to train a new model with more

random variables.

Unlike the popular graphical models that are based on defining probability distribu-

tion over propositional logic, Markov Logic Networks (MLNs) proposed by Richardson

and Domingos [47] allow one to combine first order logic with probabilities. A set of

instantiated first order logic is turned into a Markov Network with respect to a specific

grounding and interpretation, along with weights, much like the energy model in our

model. The vertices of the graph of the ground Markov Network are the ground atoms.

However, the inference with these Markov Networks is extremely expensive as the size

of the resulting Markov Network is exponential in size with respect to the number of

possible groundings.

Recently, deep learning approaches such as RNNs and LSTMs [45, 48, 61, 65] have

been found to be useful to model the semantic relationships among actions and objects

based on transitions observed in training annotation phrases. While efforts have been

made to use external text-based resources in addition to the training annotations, they

are, arguably, restricted by the quality, quantity, and vocabulary of these annotations.

As one moves up from recognizing actions to activities to events, the amount of labeled

training data needed increases exponentially, however, the availability of such data goes

down.

Our current work is a significant departure from other approaches, including our

early use of Grenander’s pattern theory [18–20] that rely on labeled training data to

capture semantics about a domain, such as sentences and phrases describing the video

segment. The use of a general knowledge database such as ConceptNet [39] as priors

alleviates the need for data annotations. In fact, the only training we require is the

one needed for detecting objects and simple actions. Other works that have the similar

philosophy are those using ontology to detect and understand events [18,36,44]. Models

such as [10, 13, 62] have also explored the use of contextual knowledge by leveraging

spatial and situational comprehension.

7. Conclusion. The contribution of this paper is three-fold: (1) a deep semantic

reasoning framework for structured representation and semantic interpretation of video

activities extending beyond simple pairwise relationships, (2) the use of a global source

of knowledge to reduce training requirements by negating the need for large amounts

of annotations for capturing semantic relationships, and (3) we are, to the best of our

knowledge, the first to introduce the notion of open world activity descriptions using

common sense knowledge. We demonstrated how pattern theory can be used to capture

the semantics in ConceptNet and infer rich interpretations that can be the basis for
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the generating of sentences or even visual questions and answers. The inference process

allows for multiple concept labels for each video event to overcome errors in classification.

Extensive experiments demonstrate the applicability of the approach to different domains

and its highly competitive performance.

Unlike other works, we do not have the need to learn action and object combination

priors from such annotations. The applicability of our approach is not restricted to the

training domain. The use of a general human knowledge database such as ConceptNet

as the source of prior knowledge alleviates the need for data annotations. In fact, the

only training we require in the proposed approach is the one required for detecting basic

concepts such as actions and objects. It allows us to leverage the knowledge gleaned

from external sources and is not restricted to a particular domain and/or dataset.

In this work, we restricted ourselves to short video snippets to demonstrate how com-

mon sense prior knowledge can be incorporated in a pattern theory framework. However,

our approach can be easily extended to the analysis of long videos containing sequences

of video activities. As we have shown earlier in our prior work [53], we can handle activity

sequences by simply extending the generator definition to have another bond type that

will link across time.
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