
Supplementary: Iterative Scene Graph Generation with Generative
Transformers

Comparison with other Transformer-based and
graph generative models. While many works use trans-
formers, such as Cong et al. [1], in their internal mecha-
nism, our work differs in several key aspects. We do not
use transformers as in encoder-decoder for feature contex-
tualization and edge labeling. Other iterative models such
as Khandelwal et al. [2] first sample a graph and further re-
fine them in a multi-stage process. Our iterative generation
is based on sampling the graph structure and populating the
sites and edges based on labeling. We begin with object
proposals (hypotheses) that are used to generate an inter-
action graph between entities. This requires joint reasoning
over the visual and semantic features to identify objects that
share plausible semantic relationships. Our novelty lies in
identifying the entity interactions based on visual semantic
features and their use in the iterative generation of predicate
labels. Similarly, we take inspiration from current graph
generation models, which directly predict the graph from
an input image. They do not generate, refine and reject hy-
pothetical nodes to generate the graph structure. Further,
we generate directed graphs with labeled edges, while other
graph generative approaches work with undirected graphs
with unlabeled edges, which increases the expressiveness
of the generated graph.

Hypothesis Generation. The key contribution of our
approach is the ability to accept/reject proposals. The graph
sampling module (Sec 3.2) can reject entities from the final
graph if there are no interactions present i.e., its adjacency is
null. Similarly, the relation predictor (Sec 3.3) can reject the
relation (edge) hypotheses proposed by Sec 3.2 by predict-
ing a background class if the likelihood of a named pred-
icate is low. Hence, the number of detected entities from
the underlying object detector does not necessarily dictate
the number of nodes in the final graph due to the dual-stage
hypotheses generation and evaluation process, unlike cur-
rent SGG which constructs edges based on pairwise com-
parisons and, with unbiasing, the correlation between co-
occurrences of predicates. Additionally, the iterative graph
sampling (Sec 3.2) allows us to progressively refine interac-
tions by generating complete adjacency lists for each node
to model possible interactions with other nodes. Hence, the
adjacency matrix is not triangular since the edges are di-

rected. To handle the sparsity in the underlying adjacency
matrix, during training we allow the ground truth to have
bidirectional edges, i.e., all present edges are also mirrored
to avoid overfitting to the background “no edge” class. The
node hypothesis provides location and semantic features to
influence the edge direction.

Comparison with unbiased SGG. The focus of this
work is to demonstrate that sampling an interaction graph
can improve scene graph generation beyond specialized
training for unbiasing. While we use a naı̈vely weighted
softmax function to tackle the long-tail distribution, it is not
considered “unbiased” SGG in the conventional sense, since
according to the definition in the seminal paper by Tang et
al [29], unbiasing involves “using the context and content”
to de-bias the predicate learning “beyond reweighting with
class frequency”, which can “fail to generalize to unseen
relationships, i.e., zero-shot SGG.” The interaction graph
sampling (Section 3.2) allows us to model the context and
content during generation to reduce the need for a separate
unbiasing step. Our work (see Table 2 in the main paper)
outperforms all approaches, even unbiased SGG models,
in zero-shot prediction, indicating that the need for unbi-
asing is reduced when modeling the interaction graph. Sim-
ilarly, we provide a considerable improvement over early
unbiasing models such as EBML and TDE as well as re-
cent ones such as RU-NET. The performance gap is fur-
ther reduced when considering the much harder SGCls and
SGDet tasks, thus validating our original hypothesis. With-
out the weighted softmax, we achieve mR@50/100 of 23.7
and 27.1 on PredCls, 13.6 and 15.2 on SGCls and 7.8 and
10.9 on SGDet, respectively, which still outperforms all
other SGG approaches without any form of unbiasing.

Computational Complexity. The average number of
objects detected in each image in the test split of the VG
dataset is 31 and the number of possible edges is 930. We
consider at most 250 edges from the sampled graph of
which an average of 234 are considered plausible edges.
This is less than 20% of possible combinations that current
SGG models consider. Figure 3 shows the impact of vary-
ing these top-k edges, with the orange showing the lack of
GGT with just an edge prior. The number of parameters
in the framework is Faster-RCNN: 41.8M, graph sampling:
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39.2M, and relation modeling: 18.8M for a total of 99.8M
parameters. For comparison, MOTIFS has 240.7M parame-
ters, KERN: 405.2M, BGNN: 341.9, and IMP: 203.8, while
the single-stage FCSGG has 87.1M parameters. The total
fps is approximately 9, which is better than MOTIFS (6.6),
FCSGG (8.4), and BGNN (2.3) to name a few. Leveraging
advances in linear attention will help speed up computation.
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