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Abstract—Deep learning-based models have recently been
widely successful at outperforming traditional approaches in
several computer vision applications such as image classification,
object recognition and action recognition. However, those models
are not naturally designed to learn structural information that
can be important to tasks such as human pose estimation and
structured semantic interpretation of video events. In this paper,
we demonstrate how to build structured semantic understanding
of audio-video events by reasoning on multiple-label decisions of
deep visual models and auditory models using Grenander’s struc-
tures for imposing semantic consistency. The proposed structured
model does not require joint training of the structural semantic
dependencies and deep models. Instead they are independent
components linked by Grenander’s structures. Furthermore, we
exploited Grenander’s structures as a means to facilitate and
enrich the model with fusion of multimodal sensory data; in
particular, auditory features with visual features. Overall, we
observed improvements in the quality of semantic interpretations
using deep models and auditory features in combination with
Grenander’s structures, reflecting as numerical improvements of
up to 11.5% and 12.3% in precision and recall, respectively.

I. INTRODUCTION

Deep learning-based models have recently been widely
successful at outperforming traditional approaches in several
computer vision applications such as image classification [1],
object detection [2], [3], action recognition [4], [5] and event
recognition [6]; however, those deep models are learned to
perform hard labeling. Another research direction seeks to
combine graphical models with deep neural networks (DNN)
to harness the power of deep features while tackling problems
that are better modeled with knowledge of structural dependen-
cies, such as in semantic image segmentation [7], extraction
of words from noisy images [8], human pose estimation [9],
and group activity analysis [10].

In this paper we demonstrate how to construct structured
semantic understanding of audio-video events from auditory
features and deep visual features using Grenander’s struc-
tures [11]. The proposed structured model performs probabilis-
tic reasoning on multiple decisions of low-level classification
models of actions and objects based on the input audio-
video features. These multiple decisions are available for each
feature as a list of action and object labels, where each label
is associated with one of the top k classification scores output
by the classifiers. Grenander’s structures use structural seman-

tic information of the domain to weigh the feature support
provided by the classifiers and therefore impose semantic
consistency on their classification decisions. An illustration
of our contribution is shown in Figure 1.

Fig. 1. Grenander’s structures probabilistic reasoning on the top k labels
scored on CNN and auditory features form semantically consistent interpre-
tations.

Grenander’s structures are also known as elements of pattern
theory (PT) [11]. de Souza et al. [12] proposed a pattern
theory framework for semantic understanding of video events,
followed by a more detailed description in [13] and [14]. This
same framework was modified in [15] to improve interpre-
tations of long video temporal sequences by incorporating
temporal dependencies in the structures. This paper extends
the work in [15] to handle fusion of multimodal features and
to integrate and reason on deep learning-based models for
structured semantic understanding of videos.

The contribution of this paper is three fold. First, to the
best of our knowledge, this is the first paper to show results
on semantic interpretation of events using deep features jointly
with Grenander’s structures. Secondly, we exploited Grenan-
der’s structures as a means to facilitate and enrich the model
with fusion of multimodal sensory data; in particular, auditory
features with visual features. Thirdly, we present the first
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results on structured semantic understanding of audio-video
events using the CMU Kitchen dataset published in [16].

II. FEATURE EXTRACTION

In this section, we describe the features used for action and
object detection. The former are based on two modal features:
visual and auditory, while the latter uses only appearance
features. For auditory features, we utilize spectrogram features,
follow by the bag-of-audio-features (BoAW) approach. Due
to the success of Convolutional Neural Networks (CNN), we
explore CNN features for motion description of actions and
appearance description of objects. A SVM classifier catego-
rizes action and object features.

For action recognition based on audio features, we use
the BoAW, a histogram representation of frame-based audio
features. These features are computed locally from short-term
auditory frames. The histogram is suitable for describing the
global characteristics of a sound event. The audio feature used
in this work is the spectrogram due to its efficiency to identify
spoken words and analyze different types of sounds [17].
The parameters used for the spectrogram generation are: a
Hamming window function width of 512 samples and an
overlapping of 50%. Then, these features are quantized using
a codebook. We build the codebook using the K-means
algorithm with K = 400. The spectrogram cluster histograms
(spec) are used as input into a SVM classifier.

For action recognition based on visual information, we
follow [18] and represent the frames with motion-based CNN
descriptors. Feature vectors are extracted from each frame
and then used an aggregated approach over time to generate
a video descriptor [19]. First, we need to compute optical
flow [20] for each consecutive pair of frames. Following [18],
the values of the motion field vx, vy are mapped to color
intensity interval [0, 255]. Then, the transformed flow maps are
saved as color images (3 channels), where each corresponding
channel contains v′x, v′y and the flow magnitude, respectively.
The flow images are resized to 224 × 224 pixels to match
the CNN input layer. We use the motion network provided
by [20], the “VGG-f” network with 5 convolutional and 3
fully-connected layers, pretrained for action recognition task
on the UCF101 dataset [21]. We utilize the output of the
second fully-connected layer as our frame descriptor ft, which
consists of 4096 values. To generate the video descriptor,
we follow the aggregation process [19]. For each descriptor
dimension over the T frames, we compute the minimum and
maximum values and concatenate them, doubling the vector
size. We employ temporal differences between ft+∆t and
ft to capture the temporal evolution of frame descriptors,
where ∆t = 4 frames. Then, the aggregating process is
also applied to frame descriptor differences. The aggregating
vectors generated on feature descriptor, and feature differences
are concatenated and used as the video descriptor (CNN Flow),
this feature vector is the input into a SVM classifier.

For object detection, we also base our descriptor on CNN
features. To represent the appearance, we use the second

fully-connected layer of the publicly available ”VGG-f” net-
work pretrained on the ImageNet ILSVRC-2012 challenge
dataset [22]. Finally, this feature vector (CNN) is used as input
into a SVM classifier.

III. GRENANDER’S STRUCTURES AS REPRESENTATION OF
SEMANTIC UNDERSTANDING

In the proposed framework, the building blocks of event
interpretations such as actions and objects are represented
as generators, denoted as g. We reuse the collection of
generators presented in [15] and complement it with more
generators representing actions and objects only available in
the CMU Kitchen dataset released in [16]; thus, forming a
richer generator space G of the cooking domain (see Figure 2).
Each generator g has a structure composed of out-bonds β′(g)
and in-bonds β′′(g). Each bond carries a bond value that
indicates how it is semantically related to other generators.
For example, the generator pour has three out-bonds whose
bond values are container, container and food. The generator
pour can connect to the generator oil through the bond holding
value food to indicate that oil is the liquid being poured in the
event.
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Fig. 2. New generators added to the generator space presented in [15]. The
feature generators at the bottom feature the contribution of this paper, both the
multimodal fusion of features and leveraging of deep models for generating
structured semantic understanding of videos.

A. Coupling deep models with Grenander’s structures

We introduce new types of feature generators to the genera-
tor space G to account for CNN features of objects and actions,
namely, the generators CNN and CNNFLOW. The generator
CNN has an out-bond of bond value object and CNNFLOW
has an out-bond of bond value action (see Figure 2). Each
CNN feature generator is associated with a deep classification
model, either for classification of actions or for classification
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of objects. These classification models are multi-class linear-
SVM classifiers trained on CNN features.

B. Multimodal fusion with Grenander’s structure

To enable the multimodal capability to the model, we add a
new type of feature generator to account for incoming auditory
features, namely, the generator SPECT. Its bond structure
is formed by a single out-bond of bond value action (see
Figure 2).

C. Bond Quantification

Two generators gi and gj connect through compatible
bonds. The meaning of such connection is determined by
their bond values; for example, the generator stir has an
out-bond of bond value stirrer, such that any other generator
that connects to that out-bond will serve the role of a stirrer
in the event. The strength of compatibility between bonds is
quantified by the acceptor function

A(β′(gi), β
′′(gj)) = exp(q(gi, gj) tanh(f(gi, gj))). (1)

where f(.) is a scoring function that measures the compat-
ibility of connecting the labels by gi and gj through their
respective bonds β′ and β′′. If gi is a feature generator and
gj is a generator representing an action or object label, then
f(.) responds as the classification score associated with the
classifier of gi for the label represented by gj . If both gi and
gj represent action/object labels, then f(.) represents the entry
value of the frequency table that counts the co-occurrence
of labels describing events of the target domain. q(.) weighs
the rescaled score output by f(.) depending on what type of
bond is formed between gi and gj . If (β′(gi), β

′′(gj)) forms a
support bond, then we let q(.) = 1.5, otherwise, if a semantic
bond, q(.) = 1.0. This means we are emphasizing the support
given by the classification scores more than the prior.

D. Semantic Interpretations

The collection of bonds in a generator g captures the
semantic dependencies among the generators, dictating how
they can combine with each other to form more complex
structures referred to as configurations. A configuration c is a
connected structure of generators used to express the semantic
understanding (or semantic interpretation) of an audio-video
event. Given a set of audio-video features, the goal is to
discover the most probable configuration c that explains the
semantics of the occurring events. To this end, we measure
the quality of a configuration c using the following energy
function:

E(c) = −
∑

(β′,β′′)∈c

log(A(β′(gi), β
′′(gj))). (2)

IV. INFERENCE OF GRENANDER’S STRUCTURES

The semantic video interpretation inference problem
amounts to minimizing the energy cost function E(c). Despite
the similarity with the energy function for MRF models, our
search space of solution is very different. In our case, both

the number of generators and structures are variable, whereas
MRF models have fixed number of random variables and
a fixed structural connection. For this reason, this problem
cannot be solved exactly, which motivates us to use a sampling
strategy built on a Monte Carlo Markov Chain (MCMC)
algorithm coupled with a simulated annealing scheduling. The
proposal function of our MCMC algorithm works efficiently
by restricting the proposal space of solution to those that can
be spanned only by the top k labels pulled by the classification
scores on the input features of the test video.

V. RESULTS

A. Dataset

The Carnegie Mellon University Multimodal Activity
database [16] contains multimodal measures of human activity,
performing tasks that involve cooking and food preparation.
The dataset contains five different recipes: brownies, pizza,
sandwich, salad and scrambled eggs. The following modal-
ities were recorded: high and low resolution videos and five
microphones. We carried our experiments using brownie recipe
videos only since only those videos had their fine-grained
annotation of events available. Spriggs et al. [23] generated
the ground truth for some videos and recipes. In total, there
are 13 event brownie labeled videos. For training, we use
videos identified by numbers 7, 8, 13, 14, 17 and 19. The
test set was formed by videos numbered 9, 12, 16, 20, 22
and 24. In brownie recipe dataset, we can find 12 action
labels, namely, stir, crack, spray, twist, etc. and 14 object
labels, including baking pan, bowl, brownie box, oil, fridge,
etc. The test set consisted of 233 event video segments. We
evaluated and compared different combinations of features
with different inference approaches (pure machine learning -
ML and pattern theory - PT). For actions, we chose histograms
of optical flow (HOF), convolution neural network based
on motion (CNN Flow) and histograms of audio features
based on spectograms (SPECT). As for object, we chose
appearance convolution neural network (CNN) and histograms
of oriented gradient (HOG). This way, the combination PT
cnn-cnnflow means that the inference and representation
were modeled with pattern theory using object models based
on CNN features and action models based on CNN Flow
features.

B. Semantic understanding based on machine learning labels
only

Machine learning algorithms such as support vector ma-
chines (SVM) and neural networks (NN) are widely used to
label actions and objects directly from video features. We im-
plemented a strategy (which we called ML-based labels) based
on linear-SVM classification models to generate semantic
interpretations of events based on auditory and visual features.
Given a set of auditory and visual features from a video, each
feature is labeled according to the best classification score. The
resulting set of labels represents the semantic understanding of
the video. The best semantic interpretation is the one formed
with all labels retrieved from best classification scores of the
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features. Thus, the kth best interpretation is formed by labels
retrieved from the kth best classification scores of the features.
This strategy ignores the structural semantic information of the
domain, relying solely on the confidence of the classification
scores to build the interpretations.

C. Semantic understanding with structured output built on
deep features

Grenander’s structures jointly with priors leverage the evi-
dence and confidence provided by the classification scores of
deep models better than its counterpart that use no structural
information and rely on support of deep models decisions
alone. Figure 3 shows that the performance of interpretations
by the deep models with Grenander’s structures are often
superior over the top 10 interpretations. Grenander’s structures
help the inference algorithm to exchange highly confident
classifier’s choices of labels by less confident ones that im-
prove the semantic consistency of the interpretations; thus,
improving the overall quality of the interpretations. Examples
of these are illustrated in Figure 6, for example, the exchanges
of put by crack, bowl by brownie box and oil by egg.

Although the methods employing HOF and HOG features
generally show lower performance when compared to those
built on CNN features, Figure 4 shows that the method with
HOF and HOG features combined with Grenander’s struc-
tures can achieve performance rates comparable to methods
employing CNN features without Grenander’s structures. This
suggests that a structured model based on pattern theory can
be potentially used to boost the performance of models using
traditional features and have comparable performance to the
state-of-the-art models using CNN features only; therefore,
serving as possibly a less costly alternative if training and
using deep models are computationally demanding for a
specific task.

In summary, the interpretations supported by deep features
and Grenander’s structures had the highest performance rates,
leading both recall and precision rates. Table I shows the
overall performance rate of each method, considering up to
the top 10 interpretations. Once more CNN features were
proven to be superior to the traditional combination of feature
histograms such as HOFs and HOGs.

Fig. 3. Semantic understanding with deep features perform better when
coupled with Grenander’s structure.

Fig. 4. Semantic understanding with traditional features (HOFs and HOGs)
coupled with Grenander’s structures (PT hog-hof) has achievable performance
rates comparable to the semantic understanding models relying solely on
classification score support of deep models (ML cnn-cnnflow).

D. Semantic understanding with sound and vision

The methods employing only auditory features for the
recognition of actions were the most positively sensitive to
the presence of domain knowledge imposed by Grenander’s
structures. For example, when ignoring motion features, there
was a performance rate improvement of 11.5% and 12.3% in
precision and recall (see Table I), respectively. Grenander’s
structures allowed the latent discriminating power of auditory
features to become visible, which was reflected by having
PT cnn-spect outperform ML cnn-spect by more than
10% in all performance metrics. We also observed that this
method (PT cnn-spect) achieved comparable performance
rates to more computationally heavier methods that depend
on motion features, namely, PT cnn-cnnflow and PT
cnn-cnnflow-spect. This suggests that audio features
could be potential surrogates for the discriminating power
offered by motion features while requiring less computational
power; thus, allowing for implementation strategies of the
low-level video processing layer that are computationally less
expensive.

Qualitatively, this improvement was reflected mostly on
selecting the right action to describe the event, correcting
47.8% of all test events. The most corrected actions were pour
(26%), take (23.3%) and stir (21.9%). On the other hand, the
sound feature support was not as positively complimentary
to deep visual features (cnnflow) as we expected in building
the semantic understanding of events. The method combining
deep visual features with auditory features (PT cnn-cnnflow-
spect) corrected just as many cases of wrongly labeled actions
as did the method with deep features only (PT cnn-cnnflow)
when contrasted with their counterparts supported with HOF
and HOG features. Additionally, PT cnn-cnnflow-spect did not
improve any interpretation case missed by PT cnn-cnnflow. In
Table I, we observe that their overall performance rates were
equivalent.

E. Improving semantic interpretation performance with
Grenander’s structure

Figure 5 shows how often labels of certain actions and
objects are fixed in the interpretations due to the semantic
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TABLE I
INTERPRETATION PERFORMANCE RATES FOR SEMANTIC UNDERSTANDING

WITH SOUND AND VISION FEATURES.

Recall Precision
ML hog-hof 0.583 0.651
PT hog-hof 0.625 0.692
ML cnn-cnnflow 0.631 0.694
PT cnn-cnnflow 0.667 0.734
ML hog-spect 0.583 0.649
PT hog-spect 0.63 0.696
ML cnn-spect 0.585 0.651
PT cnn-spect 0.657 0.726
ML hog-hof-spect 0.593 0.659
PT hog-hof-spect 0.631 0.696
ML cnn-cnnflow-spect 0.626 0.689
PT cnn-cnnflow-spect 0.667 0.734

consistency imposed by Grenander’s structures, shown as
black bars. The gray bars indicate how often certain labels
are missed by the method using Grenander’s structures but
correctly retrieved by the method without structure priors. The
graph on the top shows that in general the most likely actions
to be corrected in the semantic interpretations by Grenander’s
structure-based methods are stir, pour, take and open. This
also dictates what object labels are most likely to be correctly
selected to build the interpretations, namely, bowl, fridge,
measuring cup and brownie box. Note that these objects are
semantically compatible with the most likely actions to be
often correctly selected by the Grenander’s structure meth-
ods. For example, interpretations likely to be proposed with
combination of these actions and objects include open fridge,
stir bowl, pour oil into measuring cup, take brownie box,
open brownie box, etc. The graph at the bottom, in Figure 5,
shows that in fact these labels are the most likely labels to
be corrected by methods using Grenander’s structures. On the
other hand, other object labels more likely to be corrected by
methods without the structural influence, for instance, cap and
egg.

In a nutshell, the graphs in Figure 5 show that the methods
based on Grenander’s structure are more likely to generate
semantically consistent interpretations than the methods based
solely on feature support. Figure 6 illustrates three interpre-
tation cases depicted at different rows. On the first row, the
correct interpretation is generated by the method based on
Grenander’s structures because of the structural connections
(bonds) between the action and object labels, namely, crack →
egg and bowl → egg; thus changing the interpretation from
putting egg in a brownie box to cracking egg in a bowl.
Another good example of semantic consistency is illustrated in
the second row of Figure 6, where the interpretation is changed
from open bowl (which even by common sense may not be
semantically coherent) to open brownie box.
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Fig. 5. Number of action (first row) and object (second row) labels that
were correctly selected to build the best interpretations by the Grenander’s
structures-based methods and were missed by the methods (black bars). The
gray bars show the opposite statistics.

VI. CONCLUSION

In this paper, we demonstrated that the predictive power
of CNN features were improved by considering the struc-
tural semantic dependencies of events encoded in terms of
Grenander’s structures (generators, bonds and configurations).
These structures carry complimentary data that encourage
rectification of erroneously highly confident detections by deep
classifiers of actions and objects. Auditory features were ver-
ified to be potentially a sufficient source of data for modeling
actions. The semantic interpretations generated by the method
built on auditory features for actions and CNN features for
objects, i.e. PT cnn-spect, were qualitatively comparable to
the ones generated by its counterparts that model actions with
CNN features. This indicates that we could potentially reduce
the feature pre-processing computational cost by skipping the
motion analysis step. Finally, we verified that even when using
features not as discriminative as CNN features, Grenander’s
structures can be sufficiently strong to achieve performance
rates comparable to when using CNN features-based models
alone.
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Video illustration Wrong Interpretation by Interpretation was corrected by
ML cnn-cnnflow-spect PT cnn-cnnflow-spect
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Fig. 6. Comparative illustration of video interpretations generated by the method based on deep models without structural information (second column) and
the method with deep models using Grenander’s structures (third column). For each case (each row), the interpretations were corrected by the method that
uses Grenander’s structures.
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