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Abstract—We present a novel framework, based on Grenan-
der’s pattern theoretic concepts, for high-level interpretation of
video activities. This framework allows us to elegantly integrate
ontological constraints and machine learning classifiers in one
formalism to construct high-level semantic interpretations that
describe video activity. The unit of analysis is a generator that
could represent either an ontological label as well as a group
of features from a video. These generators are linked using
bonds with different constraints. An interpretation of a video
is a configuration of these connected generators, which results in
a graph structure that is richer than conventional graphs used in
computer vision. The quality of the interpretation is quantified by
an energy function that is optimized using Markov Chain Monte
Carlo based simulated annealing. We demonstrate the superiority
of our approach over a purely machine learning based approach
(SVM) using more than 650 video shots from the YouCook
dataset. This dataset is very challenging in terms of complexity of
background, presence of camera motion, object occlusion, clutter,
and actor variability. We find significantly improved performance
in nearly all cases. Our results show that the pattern theory
inference process is able to construct the correct interpretation
by leveraging the ontological constraints even when the machine
learning classifier is poor and the most confident labels are wrong.

I. INTRODUCTION

Computational models for video activity recognition can be

described as a hierarchy of representations, each representing

larger and larger temporal scales. One such hierarchy involves

transition through representations of parts and their movements

(e.g. hand, head), actions (e.g. pick up, walk, run) or objects

(e.g. can, bowl), interactions (e.g. person stirring butter),

followed by tasks (e.g. preparing cookie dough). The input

consists of low-level spatio-temporal features detected in the

video. To date, few works have attempted to address all

levels of this hierarchy. There are many works on action

recognition and very few on the interaction or task level

recognition [1]; thus, we focus on the latter levels. As has been

comprehensively discussed in [1], high level event recognition

varies from direct classification to fusion techniques. Most

works try to bridge the hierarchical gap in one step using

some form of machine learning approach that is trained with

a sufficiently large dataset.

Some of the current methods in interaction and task level

recognition are categorized in Table I. As we can see, most

of the works start from a feature histogram representation.

HOG and STIP features appear to be most common. The final

outputs of these approaches are mostly sentences, arrived at

using different methods that rely on a machine learning-based

labeling of objects and actions. Many of the approaches try to

bridge the gap between detected features and final concept-

label in one step. Support vector machines (SVM) appear

to be the most commonly used machine learning technique.

These outputs are then used to generate sentences. A popular

method for this final step involves using predefined sentence

templates that are filled in using the inferred labels. Another

method uses an event-interaction concept matrix [2] where an

event is characterized by the occurrence of a particular subset

of simpler concepts. The linear combination resulting from

the multiplication of the event-interaction concept matrix and

a test video concept score vector is a chain of probabilities

for each possible event. The highest score in the chain is the

final label of the video, which guides the generation of textual

descriptions. Some approaches [3], [4] use prior knowledge

derived from text mining but do not use predefined ontology.

In this paper, we present a fundamentally new approach

to high level video interpretation using Grenander’s pattern

theory formulation [10]. The basic idea in this theory is to use

subject matter knowledge, i.e. domain ontology in our case, to

develop algebraic representations of the system under study,

and then impose probabilistic superstructures on them to drive

inferences. The inference engines are kept general to allow for

simultaneous variable and model estimation. This framework

is both rigorous and comprehensive. In recent years, the

strengths of pattern theory have become more visible in appli-

cations involving biological growth [11] and stochastic models

for human thoughts (unpublished manuscripts can be found

at http://www.dam.brown.edu/ptg/publications.shtml). An in-

tegral part of our approach is the use of ontology, which refers

to an organization of concepts in terms of their properties, and

more importantly, relationships and dependencies with other

concepts. This theory builds on well known ideas of stochastic

grammars and syntactic pattern recognition.

The novelty and distinctiveness of our approach are three-

fold. First, our proposed method is an integrated process

that evaluates ontological label confidence as needed during

the search process which is in contrast to the sequential

ideas presented in the literature. This helps us recover larger

structures even from poor detection results. Similarly, our

framework boosts weak predictions by domain knowledge

likelihoods derived from dataset annotation. Second, while

previous works focus on generating textual descriptions, we

propose to extract graphical structures that represent the video

contents. These graphical structures allow us to express video

interpretations in a language independent manner and can

be mapped to language constructs if so desired. Third, our
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TABLE I
SUMMARY OF WORKS ON HIGH LEVEL VIDEO ANALYSIS OF INTERPRETATIONS AND/OR TASKS. LEGEND: (*) LOCATION, DISTANCE OF FACIAL

FEATURES, AND TORSO AND ARM LENGTH, ANGLE, STRIDE; LC - LINEAR COMBINATION; ECM - EVENT-CONCEPT MATRIX; SDP - STANFORD

DEPENDENCY PARSER; SVO - SUBJECT-VERB-OBJECT; DPM - DEFORMABLE PART MODELS; DT - DECISION TREE

Hierarchy Component [5] [6] [2] [7] [8] [9] [3] [4]
Prior - - - - Text - SVO mining Video Textual

Knowledge Mining (SDP1) Description

Level 1 Spatial edges, color Haar, Color, SIFT HOG, BoVW + OpponentSIFT HOG HOG3D,

Features Geometry∗, body post. HoG HOG, color

EOH

————————————————————————————————————————————————-

Motion - - STIP OF BoVW + STIP STIP -

Features (HOG,HOF) STIP (HOG,HOF) (HOG,HOF)

Level 2 Object Matching Cascade SVM DPM DPM SVM DPM, MMLDA,

Recognition Verb Expansion DPM

Level 3 Action Matching HMM SVM HMM DT SVM SVM, MMLDA

Recognition Verb Expansion

Activity - - LC2 w/ HMM Chain - Content Tripartite

Recognition ECM3 Rule Planning Template Graph

Task - - LC w/ - - SVM + - -

Recognition ECM ECM

Sentence concept hierarchy Probabilistic Template Template - - BerkeleyLM MMLDA +

Generation of actions Template Filling Filling Filling Ranking + NN

proposed algorithm is also easily extendable to recognition of

semantically higher-level events by simply adding on ontolog-

ical layers.

II. PATTERN THEORY BASED COMPUTATIONAL

STRUCTURE

The basic units of representation in pattern theory are

generators that represent ontological labels as well as the

detected features in the video. Each ontological generator

represents either an action, an interaction, or a task level

concept and are associated with possible bonding links that

can connect to other generators. Each feature generator rep-

resents a group of video features detected in the image, e.g.

a bag of features describing a detected object or a tracked

action in the video. These generators are linked using bonds

with different constraints. The bonds between the ontological

generators are constrained by the domain ontology whereas

the bonds between the ontological and feature generators are

determined by the strength of classification and represent

signal level support for concepts. An interpretation of a video

is a configuration of these connected generators that results

in a richer graph structure with more expressive power than

those commonly used in computer vision. These interpreta-

tive structures link object and action labels that are tied to

observed features. The scene inference is guided by an energy

function that is optimized using Markov Chain Monte Carlo

(MCMC) based simulated annealing. This framework allows

us to elegantly capture ontological constraints and bottom-up

machine learned label outputs as a means to construct high-

level semantic interpretations that describe video activities.

While integrating several stages, this inference procedure

simultaneously performs high level event recognition. In the

following subsections, we outline this theory customized to

our context using more rigorous language.

Fig. 1. A) Hierarchy of generators divided by level. Out-bonds are shown
in white semicircles and in-bonds are shown in dark semicircles. B) An
example of pattern theoretic interpretation of a video. Generators represent
detected features, objects, and actions. Bonds between ontological and feature
generators are called grounding links. Bonds between ontological generators
are referred to as ontological links.

A. Generators - Morphology and Equivalence Classes

A generator g ∈ G is the basic unit used to construct

regular structures that represent information about patterns,

where G accounts for the whole space of generators. Some

example generators are shown via a schematic in Figure 1A).

Any generator g has a bond structure B(g) = (Bs(g), Bv(g))
that is defined by an arrangement Bs(g) of (in- and out-)

bonds with coordinates in the range j = 1, 2, ..., w(g) (such

that w(g) = win(g) + wout(g)) and a set Bv(g) of bond

values βj(g). Any generator has a variable number of in-
bonds win(g) (or in-bond arity) and a constant number of

out-bonds wout(g) (or out-bond arity). The set of out-bonds

can be thought of as the signature of a generator.

The domain ontology establishes the morphology of the

generators, their roles, and how the connections should be

made to express contextually relevant structures. These struc-

tures shall represent human-perceivable patterns in the real
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world (e.g., pour milk in bowl, slice carrots, etc.).

Each level of the hierarchy represents a categorical concept,

as show in Figure 1A). Thus, the set of generators can be seen

as a composition of generator subspaces, G = ∪αG
α, where

α ∈ {1, ...,M} correspond to the levels. The lowest level in

the hierarchy is composed of generators that represent feature

groups detected in the video, such as bags of similar histogram

of oriented gradients (HOG) features or histogram of optic

flow (HOF) features. These generators do not have out-bonds,

but only in-bonds, connected to higher level concepts. The

intermediate level of the hierarchy represents inanimate object

concepts, such as bowl, cup, etc. The top level representing

actions (that interact with objects), such as stir, pickup, etc.

This hierarchy can be extended upward with new generators

representing task level concepts. In this paper, we restrict

ourselves to three levels.

Disjoint subsets of the generators, each corresponding to a

hierarchy level, can also contain equivalence classes that will

allow us to switch among generators transformed by a valid

group. Let S be a similarity group that induces an equivalence

relation on Gα, and contains similarities s ∈ S. This means

that Gα is partitioned into equivalence classes Gα
γ such that

any pair of generators in a class holds similar properties.

Therefore, an equivalence class is a subset Gα
γ ⊂ Gα of

generators in which any two generators gi, gj ∈ Gα
γ possess

similar properties and hold the same bond structure. For

instance, the group {water, juice, oil,milk} is an equivalence

class, representing liquids, which can be interchanged.

B. Interpretations

Generators combine and relate to each other by connecting

their out-bonds to in-bonds of others, forming structures

referred to as interpretations. Formally, an interpretation
σ(g1, g2, ..., gn) is a connected structure σ that represents a

composition of n generators gi ∈ G while respecting the

bond relation ρ. The bond relation ρ is a truth function that

determines whether two bonds β
′

and β
′′

are compatible. This

is determined from the ontological constraints for ontological

bonds.

Figure 1B) depicts a possible interpretation of a video where

three groups of features were detected: an HOF feature gen-

erator g1f (accounting for the motion found in the scene) and

two HOG feature generators (g2f and g3f ). At the ontological

level, the generator pour has two out-bonds (with values milk
and cup) and no in-bonds, while the generators milk and cup
have both one out-bond to explain features and one in-bond

to sustain the significance or existence of other generators.

We can define the concept of a regular or irregular in-

terpretation based on the bonds that are connected. Note

that an interpretation need not have all the bonds connected.

An interpretation c = σ(g1, g2, ..., gn) with all out-bonds

connected is called a regular interpretation (or completely

regular interpretation). Interpretations with only some of their

out-bonds connected have incomplete meanings and are called

irregular interpretations. For instance, if the out-bond of the

cup generator was not connected to the HOG generator in

Figure 1B), we would have an irregular interpretation (i.e. an

interpretation with gaps).

C. Probability of Interpretation

The probability of an interpretation is expressed as a product

of terms associated (i) with each individual generator and (ii)

each bond. To each generator, we associate a positive-valued

quality function Q(g) that captures its importance or pre-

ponderance in the domain ontology. In this paper, we have

chosen these values to be the same constant; however, they

can be relaxed in the future.

A bond between two generators is formalized as the re-

sponse of an acceptance function, A(gi, gj), that determines

the degree of compatibility in the connection gi ↓ gj . We

have two kinds of bonds: bonds between two ontological

concepts (g3i ↓ g2i ) and bonds between an ontological concept

and detected feature generator, e.g g3i ↓ g1i and g2i ↓ g1i is

depicted in Figure 1. The intra-ontology links are derived from

the object-action co-occurrence tables and ontology domain

constraints. We compute the fraction of times that a particular

pair of ontology labels (i.e. action-object, object-object, and

action-action category pairs) exists in the training data. We

also make use of domain knowledge in terms of links that

we know should and should not exist between ontologies.

This simple estimation procedure can perhaps be made more

rigorous using a Bayesian framework; however, it suffices

for our current illustration of the pattern theory framework.

We quantify the second type of links (i.e. between feature

generators and ontological labels) using confidence values

returned by machine learning classifiers. These grounding

links indicate that a certain ontological concept denoted by

generator g2i has its occurrence supported by a generator

g1j that holds data of a specific kind of feature (e.g., shape

features, appearance features). We use the soft outputs of

inference algorithms (e.g., SVM) that are run to detect the

concepts represented by the generators. For example, in the

connection g2i = bowl ↓ gij = HOG, we could run SVM

predictor that knows a classification model of bowl learned

with HOG features; the prediction confidence value would be

used as the weight value supporting the connection g2i ↓ g1j .

The probability of interpretation σ(g1, · · · , gn) is given by

p(σ) =
kn

n!Z(T )

n∏

i=1

Q(gi)
n∏

(k,k′ )∈σ

(A(βj(gi), βj′ (gi′ )))
1
T ,

(1)

where Z(T ) is the partition function and the ratio kn

n! cap-

tures the complexity of the interpretation. The energy of an

interpretation is then written as E(σ) = −T log p(σ)Z(T ).
The number of generators in the interpretation is denoted

by n, and kn is a constant. This multiplicative ratio factor

helps the probability function have a desirable property -

probability of an interpretation that is the simple union of

two smaller interpretations is lower than the product of the

probabilities of the individual interpretation. In other words,

for two independent groups σ = (σ1, σ2) we can show that

E(σ) = E(σ1) + E(σ2) + B(s1 + s2, s1) where B(., .) is
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the binomial coefficient which is always ≥ 1. Thus, there is

an in-built bias against simple addition of two interpretations.

We can also show that the partition function, which actually

represents a grand Gibbs ensemble, is bounded if ρ is set

to less than a value that is dependent on the maximum link

values.

D. MCMC-based Simulated Annealing Inference

Computationally, the crucial task is to be able to compute

the probabilities of possible interpretations without computing

the notorious partition function, Z(T ). The inference engines

will be kept general to allow for simultaneous variable and

model estimation; a particular tool in this setup is the random

sampling of posterior. We can synthesize random possible

interpretations by an iterative procedure of simple and/or

composite moves through the interpretation space. We employ

a MCMC based simulated annealing process to maximize the

probability function or equivalently minimize the correspond-

ing energy function E(σ). The MCMC process uses a global

proposal function that suggests significant changes in the inter-

pretation structure and a local proposal function that suggests

simple moves. We generate the following global proposal. For

feature generator g1i , select an ontological generator g2,3j that

can be possibly linked, based on top k classification results.

Then we add the ontological connections between the selected

explanations to create the interpretation. For local proposal

moves, we randomly select a generator from the interpretation

and replace it with the proposed surrogate that yields the low-

est local energy. At each iteration of the simulated annealing,

we randomly choose between these moves based on a pre-

chosen preference for making global moves. The simulated

annealing process is run on a linearly decreasing temperature

schedule.

III. EXPERIMENTAL SETUP

We discuss the dataset, its challenges, and then outline

details about the key pattern theoretic concepts. This is fol-

lowed by an outline of the baseline algorithm considered for

comparative analysis and, subsequently, a description of the

evaluation framework.

A. Data

We validated the proposed framework on a challenging, re-

cent YouCook dataset [4], consisting of instructional videos of

different cooking styles, such as assembling, baking, grilling,

etc. From a computer vision point of view, this dataset poses

enormous challenges for vision algorithms due to presence

of camera motion, diverse background scenes and contexts,

clutter, and differences in subjects. In this study, we focus

solely on the evaluation of labeling and interpretation problem

by using a subset of the dataset whose objects and actions

locations have been annotated (44 of 88 videos). Out of this

subset, we selected 22 videos to form a new training set and

the remaining 22 for the test set such that they both had

roughly the same object and action categories. There are 6

action categories (stir, pickup, putdown, season, flip, and

pour) and 18 object categories (bowl, cup, spatula, knife,

pan, tongs, plate, oil, pepper, tomato, butter, spreader,

bread, spoon, lemon, carrot, meat, and egg).

Each video consists of several shots that depict the different

steps of a cooking recipe. These shots form our units for

interpretation. There are 309 training shots and 359 testing

shots. Each shot exhibits one of the studied actions and

displays some objects that might be participating in the action

or just appearing in the scene. For example, a shot could depict

a cook picking up a whisk to stir ingredients in a bowl while

a slice of meat and a knife are on the table.

B. Object and Action Feature Generators

As you might recall, in our pattern theoretic framework, for

each detected object and action, we instantiate a feature gen-

erator, characterized by its feature representation. An action is

represented by a sequence of three stages of motion pattern

captured by histograms of optic flow (HOF). Dense optic flow

frames are computed for the pairs of consecutive frames in

a shot. Each shot is further divided in three segments. An

HOF, weighed by the magnitude, is then assembled for each

segment to characterize the motion patterns of the action start,

its development, and its ending. The action is then represented

by the ordered concatenation of the three HOFs extracted from

the shot segments. As for the objects generators, we use the

histograms of oriented gradients (HOG) representation. Other

more sophisticated features are possible; however, these suffice

for now to demonstrate the power of using ontology.

C. Ontology to Feature Bond Quantification

We have two kinds of bonds: i) bonds between two onto-

logical concepts and ii) bonds between an ontological concept

and detected feature generator. As we described earlier, for the

latter, we use multiclass classification models for the action

and for objects built using linear support vector machines

with LibSVM [12]. Because the number of training instances

across categories is uneven, we generated synthetic samples

using SMOTE [13] for the minority categories (e.g., categories

season and flip had only 4 and 7 training instances). We

noted that the confusion matrices of the classifier’s diagonals

are only partially dominant. This means that the learned

models are weak if recognition simply consists of labeling

based upon the model’s best prediction scores. There is

a noticeable confusion between overlapping categories. For

example, there is a great deal of the picking up action involved

in flipping action (pickup and flip). Additionally, training

instances of objects typically used together add confusion to

the classification models. For instance, spatulas are commonly

used to stir ingredients in a bowl (bowl and spatula). This is

the kind of confusion that we expect to be alleviated by the

inclusion of prior knowledge ontology. For instance, the action

pickup could be ruled out in favor of pour to label the action

happening in a scene after inferring the presence of cup and

oil. Additionally, ontology constraints and prior knowledge

derived from the co-occurrence of objects and actions can also

be used to boost the inference process.
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Interpretations generated by the PTI algorithm for different video shots (a-f) are depicted in terms of circles and links forming graph structures above
their corresponding sample frames. Shot (a-f) increase in visual complexity from left to right and top to down. The feature generators are grounded to their
corresponding regions in the images. The correct ontological labels are outlined with dashed, red circles. Shots (c-d) and (e-f) are pairs of consecutive shots
from the same video. Shots (e-f) exhibit the most visually complex scenario containing several objects. For these cases, the baseline erroneously labeled all
objects as plate and actions as pour (the classes with highest prediction values).p ( g p

(a) (b)

Fig. 3. (a) Percentage of correct labels by the pattern theoretic inference process and by the baseline algorithm, computed over videos depicting full recipes.
(b) The number of shots with a particular performance for the baseline and PT Inference. The horizontal axis represents the performance scores with good
values to the right.

D. A Baseline Interpretation Algorithm

We are not aware of any approach that we can use as

a basis for comparison. Our output consists of a graphical

representation involving ontological concepts, grounded by

observed features. Most competing approaches output sentence

level interpretation. So, we constructed a baseline approach

that has a machine learning flavor, which is the dominant

paradigm in computer vision. The baseline algorithm simply

returns the object action nodes connected to the observed

features. There are no connections between the object and the

action labels; thus, no judgments are made about what action

is performed on which object.

E. Evaluation Metric

An interpretation consists of ontological and feature gener-

ators connected by bonds. The performance is measured by

calculating the fraction of the number of correct ontological

generator labels associated with each feature generator to

the total number of feature generators. Using the examples

depicted in Figure 2, this would be the number of correct label
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associations (highlighted with red dashed circles) divided by

the total number of feature generators.

IV. RESULTS

In Figure 2 we present a few examples of output by the

pattern theoretic inference (PT Inference) method. The shots

display visually complex scenarios containing objects as well

as their interactions with other existing objects (e.g., egg

yolk in a bowl) and their participation in the ongoing action

(e.g., person grab plates). In case of shots (a) and (b), the

best machine learned output labels are all wrong (i.e., the

baseline algorithm score is 0). Thus, relying on purely bottom

up, machine learned, labels will result in very poor perfor-

mance owing to the notoriously weak classifiers. Ontological

constraints help to pull out labels that are not necessarily

the ones declared with the highest confidence by the SVM

classifier. The PT Inference process attempts to make sense

of explanations given by weak prediction values, instead of

discarding them, by considering other co-relevant predictions.

These improvements come from co-support provided by the

labels predicted in the scene.

In Figure 3 (a) we compare the average performance of

interpretations by the purely bottom-up baseline and PT In-

ference methods for each test video (a complete recording

of one recipe). The interpretation performances are computed

based upon the percentage of correct labels predicted on

each shot. With the exception of 2 test videos, the baseline

approach is outperformed by the PT Inference approach. On

average PT Inference improved the recognition performance

by 10% . Figure 3 (b) further demonstrates the superiority of

PT Inference. It shows the histogram of scores for the two

algorithms. We observe that the baseline algorithm results in

mostly zero scores, whereas the PT Inference algorithm results

in higher scores.

On first consideration there are similarities between the

Pattern Theory (PT) framework and Probabilistic Graphical

Models (PGMs). Both employ the use of graphs structures,

such as nodes and links, and reasoning with both of them

can be cast in energy minimization terms. However, there are

fundamental differences in the representation, which imparts

certain advantages to PT over PGM. The nodes in PGM

represent random variables, but nodes in PT (i.e. generators)

can be seen to represent specific outcomes. The links in PGM

capture dependencies and are quantified by probability values,

whereas the links in PT (i.e. bonds) capture compatibility

between outcomes in terms of energy values. Modeling in

terms of random variables makes the PGM specific for each

condition. For instance, the PGM structure to model the

interaction of a person with an object will be different from

one that is used to model interaction of two persons with an

object. We will have to pre-specify (or learn from prior labeled

data) these structures. However, for PT, we just need to specify

the energy model between people and object generators and

it will be able to handle interaction among any number of

people and any number of objects. In other words, PT is easily

extensible to handling new situations.

V. CONCLUSION

We find that Grenander’s pattern theoretic concepts offer

an elegant framework for building high-level interpretation

of video activities in terms of probabilistic algebraic struc-

tures. Ontological constraints and machine learning labeling

approach, which is the current computer vision paradigm,

are naturally integrated into this framework. The resulting

interpretative structures link object and action labels, grounded

to observed features in the sequences. The MCMC based

simulated annealing performs well in optimizing this energy

function. We demonstrated the superiority of our approach

over a purely machine learning based approach (SVM) using

more than 650 video shots from the YouCook dataset. Our

results show that the PT Inference algorithm constructs nearly

correct interpretations by leveraging the ontological constraints

even when the machine learning classifier is poor and the most

confident labels are often incorrect.
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